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S U M M A R Y
We investigate the emergent dynamics when the slip law formulation of the non-linear rate-
and-state friction law is attached to a Burridge–Knopoff spring-block model. We derive both
the discrete equations and the continuum formulation governing the system in this framework.
The discrete system (ODEs) exhibits both periodic and chaotic motion, where the system’s
transition to chaos is size-dependent, that is, how many blocks are considered. From the
discrete model we derive the non-linear elastic wave equation by taking the continuum limit.
This results in a non-linear partial differential equation (PDE) and we find that chaos ensues
when the same parameter is increased. This critical parameter value needed for the onset
of chaos in the continuous model is much smaller than the value needed in the case of a
single block and we discuss the implications this has on dynamic modelling of earthquake
rupture with this specific friction law. Most importantly, these results suggest that the friction
law is scale-dependent, thus caution should be taken when attaching a friction law derived
at laboratory scales to full-scale earthquake rupture models. Furthermore, we find solutions
where the initial slip pulse propagates like a travelling wave, or remains localized in space,
suggesting the presence of soliton and breather solutions. We discuss the significance of
these pulse-like solutions and how they can be understood as a proxy for the propagation of
the rupture front across the fault surface during an earthquake. We compute analytically the
conditions for soliton solutions and by exploring the resulting parameter space, we introduce
a possible method for determining a range of suitable parameter values to be used in future
dynamic earthquake modelling.

Key words: Numerical solutions; Non-linear differential equations; Friction; Earthquake
dynamics.

1 I N T RO D U C T I O N

1.1 Background

Although significant advances have been made in our knowledge
of fault structure and plate tectonics, our understanding of the the
physical mechanisms responsible for the initiation, propagation and
termination of earthquake rupture remains unclear. It is believed
that there exist complex physical properties and behaviours in the
earth’s crust and along fault surfaces that prevent our ability to
make accurate predictions. Two avenues by which we try to under-
stand the physics and complexity of earthquakes are in laboratory
studies of rock friction and mathematical dynamic rupture mod-
elling. So far these two fields remain relatively disconnected and
it is still unclear how laboratory discoveries can best be applied
in dynamic models of earthquake faults (Scholz 1998; Marone
1998).

The late 1970s saw an increased interest in stick-slip instabilities
present in laboratory rock experiments as a means of understanding
earthquake ruptures. Dieterich, Ruina, Rice and others used these
experiments as a means to formulate constitutive laws capable of de-
scribing the frictional stress when rocks were sheared against each
other or over a surface (Dieterich 1978; Rice 1983; Ruina 1983).
The mechanisms of slip instabilities in laboratory experiments have
been proposed to be dependent on several factors including reduced
frictional force during sliding (slip weakening) or accompanying an
increase in slip velocity (rate weakening) (Ruina 1983). Improve-
ments to these constitutive laws were made when data analysis
suggested that friction could not be a function solely dependent on
velocity, nor could slip-weakening friction completely describe the
relationship between static and dynamic friction (Marone 1998).

Resolution to these setbacks were made when they found that with
the incorporation of a state variable there emerged a robust friction
law capable of reproducing a wide range of dynamics similar to the
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behaviour of a fault during an earthquake rupture. These emergent
dynamics include a Gutenberg–Richter distribution of event sizes,
stick-slip phenomena and fault healing (Marone 1998). The state
variable is an empirical quantity usually interpreted as a measure
of asperity contact between two sheared surfaces, or the amount
of time required for the renewal of these asperities (characteristic
contact lifetime) (Marone 1998).

1.2 The ‘slip law’ formulation

In the literature this constitutive law is currently referred to as
‘rate-and-state’ friction with the specific state evolution law often
referred to by author name. One formulation of such a friction law
was proposed by Ruina (1983) and is known as the ‘Ruina law’ or
‘slip law’ (Dieterich 1979; Ruina 1983; Marone 1998)

τ = σn

[
f ∗ + b ln

(
voθ

Dc

)
+ a ln

(
v

vo

)]
dθ

dt = − vθ

Dc
ln

(
vθ

Dc

)
⎫⎪⎬
⎪⎭

,

(1)

where the friction stress τ is a function of the normal stress σ n, f ∗

is the steady-state coefficient of friction when sliding at velocity vo

(Marone 1998) and introduced for dimensional consistency (Ruina
1983), Dc is the critical slip distance in order for friction to change
from static to dynamic values (Rabinowicz 1951), v is the slip rate,
a and b are positive frictional parameters that scale the response
to a step change in the imposed velocity of a single spring-block
configuration (Scholz 2002) (see Fig. 1 where A = σ na and B = σ nb)
and θ is the state variable. And while there are other formulations
of the state evolution law for rate-and-state friction and none can
completely simulate all the laboratory data of friction, the studies
conducted by Ampuero & Rubin (2007) (and references therein)
suggest that the slip law is far more consistent with laboratory
experiments of velocity stepping as described in Fig. 1.

According to Dieterich & Kilgore (1994), the parameter Dc cor-
responds to the critical sliding distance necessary to replace the
population of asperity contacts. Setting A = σ na and B = σ nb, the
meaning of these two parameters is best understood by writing the

Figure 1. Schematic diagram taken from Erickson et al. (2008) [originally
from Scholz (2002)], illustrating the response to a step change in the imposed
velocity, v of a single spring-block slider model. The imposed velocity,
initially maintained constant at v0, is suddenly incremented by a factor of
v0 (denoted by �v) and subsequently held constant at v0 + �v. The friction
stress τ , initially constant at τ 0, suddenly increases by A when the velocity
is incremented by �v and then decreases exponentially to B. The length
scale Dc, characterizes the distance taken by the state variable θ to reach a
new steady state θ0.

expression for the friction stress

τ = τ0 + B ln

(
v0θ

Dc

)
+ A ln

(
v

v0

)
,

where τ 0 is the traction when the slider is moving at constant velocity
vo. When the slider moves at constant velocity vss (steady state), the
expression for the stress becomes

τss = τ0 − (B − A) ln(vss/v0).

According to Rice (1983) and Rice et al. (2001), the parameter A =
∂τ /∂ln (v) is a measure of the direct velocity dependence (some-
times called the ‘direct effect’) while (A − B) = ∂τ ss/∂ln (vss) is
a measure of the steady-state velocity dependence (see Fig. 1).
Furthermore, if the slip velocity v can be approximated by a step
function then the parameter (B − A) plays a role of a stress drop
while A corresponds to the strength excess (Ohnaka & Shen 1999)
and are related to the non-dimensional seismic ratio S that affects
supershear rupture (Andrews 1976; Dunham 2007; Schmedes et al.
2010b) by the following relation S = A

B−A .

1.3 The Burridge–Knopoff model

The ability of rate-and-state friction to properly reproduce earth-
quake dynamics is studied by the formulation of a dynamic rupture
model subject to a friction law, an initial spatial distribution of the
stress and strength of the material over the fault surfaces, as well as a
mathematical description of how these properties evolve during the
rupture process. One type of dynamic model, studied extensively
since its introduction in the 1960s, is the Burridge & Knopoff (1967)
(BK) model of many blocks interconnected by elastic springs (see
Fig. 2) with spring stiffness coefficient μ. The blocks are also elas-
tically coupled (with spring stiffness coefficient λ) to a rigid plate
moving at a constant velocity vp and pulled over a rough surface
described by some friction law. The interface between the blocks
and the rough surface can be considered an analogue for a 1-D
earthquake fault (Carlson et al. 1991).

Although there are more physical rupture models available [for
a comprehensive review of numerical implementations of dynamic
modelling of earthquake rupture see Section 2 of Madariaga &
Olsen (2002) and references therein], the simplicity of the BK model
allows for the numerical simulation of a large number of scenarios

Figure 2. The equations of motion are derived from the dynamics of a spring
connected chain of blocks, elastically coupled to a driver plate moving at a
constant velocity vp. uj(t) is the slip value of the j th block, μ is the spring
coefficient between blocks and λ corresponds to the elastic coupling with
the driver plate. The blocks slide along the rough surface according to a
particular friction law (rate-and-state friction for this study). Depending on
the values of the internal parameters, the chain will move in a variety of
ways.
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and thus a larger exploration of the parameter space characterizing
the rate-and-state friction law.

Burridge & Knopoff (1967) conducted several laboratory ex-
periments of this system—the first case considered equal spring
constants between blocks, and the second with graduated values
for the spring constants. They observed several types of behaviour
in this configuration including the presence of large shocks in the
system when the spring constants were stretched far enough to
set the blocks on the verge of instability. And while they found a
Gutenberg–Richter distribution of event sizes present in their model,
they note that statistical properties along the fault surface are deter-
mined by the nature of the friction law describing the interface (a
property confirmed, at least partially, by Elbanna & Heaton 2009).
At this time rate-and-state friction laws had not yet emerged as pow-
erful tools in dynamic simulations however. Burridge and Knopoff
formulated the equations of motion for this system incorporating a
friction law that was dependent only on the block’s velocity.

These equations and similar formulations of them have been
studied in detail since this time. In studies involving a velocity
weakening friction law attached to a BK model, the internal pa-
rameter space has been explored and a rich variety of dynamics
have been observed including chaotic regimes as well as localized
solutions, see (Carlson et al. 1991; Schmittbuhl et al. 1993, 1996;
Español 1994; Elbanna & Heaton 2009). Carlson & Langer (1989)
considered a spring-block model under a velocity weakening fric-
tion law: if Xj is the position of the j th block and the slip rate v is
denoted by Ẋ j , then the friction acting on this particle is given by

F(Ẋ j ) = Foφ(Ẋ j/v1), (2)

where v1 is a characteristic speed and φ vanishes for large values
of Ẋ j and is normalized so that φ(0) = −φ′(0) = 1. They found
that this friction law exhibits periodic as well as stick-slip motion in
the spring-block system. Furthermore, Carlson et al. (1991) found a
transition from localized to delocalized events and derived a param-
eter condition for the BK model under velocity-weakening friction
that guarantees that pulses remained sufficiently small so as not
to propagate into the outer, firmly stuck regions in the model. In
Schmittbuhl et al. (1993), the authors found a wide range of event
types by varying a control parameter proportional to the product
of the driving rate and the size of the system. The authors found
that by increasing the parameter N × vp, (the product of the size
of the system or number of blocks, N and vp, the driving displace-
ment rate), a transition from chaotic to localized (solitary wave
type) solutions occurred (referred to as a ‘finite-size effect’). When
N × vp = 8, for example, a solitary wave emerged with constant
speed (10 blocks per time unit) and a wavelength of eight blocks.
Furthermore, the work of Español (1994) studied a BK model of a
spring-block system subject to velocity weakening friction. For slip
rate v,

F(v) = Fo

1 + v

v f

, (3)

where vf is a characteristic velocity for friction and Fo is the thresh-
old friction. In their model, the speed of sound, l is defined by
the ratio of the spring constant between the blocks and the spring
constant connecting the block to the driver plate (l2 = μ

λ
for the

parameters described in Fig. 2). By varying the speed of sound,
they observed intervals in which periodic, complex or localized,
solitonic behaviour emerged. For large values of l they found peri-
odic motion, while for intermediate values of l they found various
amounts of solitonic behaviour, the pulse sometimes undergoing
several turns in the chain of blocks before decaying.

It is important to note that chaotic behaviour and localized events
found in the studies mentioned here consider a BK model under
a different, nonlinear friction law (i.e. velocity weakening). Be-
cause we find similar behaviour with the rate-and-state friction law,
it introduces the question of whether or not the specific form of
the friction law matters, or if the non-linearity of the law alone is
sufficient in generating these dynamics.

1.4 Modelling challenges

Although the use of rate-and-state dependent friction is justified
by empirical studies in the laboratory, there are disadvantages be-
cause of the difficulties that the non-linearity of rate-and-state fric-
tion imposes in the numerical simulations. As detailed in Erickson
et al. (2008), rate-and-state friction attached to dynamic models
can result in differential equations that are very stiff in the numer-
ical sense. Naı̈ve methods to numerically integrate these equations
are extremely inefficient and computationally expensive. Lapusta &
Rice (2003) incorporated a regularized formulation of rate-and-state
friction in a 2-D antiplane framework. However, for the parameter
range they considered, they found only periodic behaviour in their
solutions. It is possible that an insufficient exploration of parameter
values may be one explanation as to why chaotic regimes have rarely
been observed with rate-and-state friction laws.

In addition to numerical difficulties, implementing a robust fric-
tion law in the dynamic model of an earthquake presents another
fundamental challenge. Friction laws like rate-and-state, or the Free
Volume law (Daub & Carlson 2008) have been developed to de-
scribe the physical processes of small samples in laboratory exper-
iments with microscale lengths on the order of the centimetre or
less. Applications of these friction laws into numerical models of
earthquakes will thus require making assumptions about the spatial
properties of the parameters of the friction law as current numerical
implementation of a dynamic model of an earthquake requires a de-
scription of the initial stress and the friction law at a length scale of
the order of ∼100 m. It is possible that the emergent behaviour from
a full-scale rupture model can be lost or altered when considering
models of this size, as modern computing capabilities prevent us
from being able to prescribe frictional properties at the microscales
in a full-scale model.

In addition to possible problems introduced by attaching labora-
tory derived friction laws to full scale models, dynamic modelling
requires a correct description of the spatio-temporal variability of
parameters involved in the earthquake rupture process. This makes
the simulation of the propagation of the rupture and prediction of the
ground motion possible. Unfortunately there has been little agree-
ment on proper parameter values and our evidence to date suggests
that a proper quantification of parameter values across the fault
is neither achieved, nor well understood. For instance, the selec-
tion of the parameters values can be complicated when heating and
pore pressure are included (Rice 2006). More generally, the proper
question is to determine the spatial distribution of these parameters
along the fault surface. Direct estimates of them into realistic condi-
tions prevailing during an earthquake is currently unattainable and
there is no evidence that indirect estimate of the parameters of the
friction laws through inversion methods will lead to an important
breakthrough. For instance, current attempts to determine the spatial
variability of the slip-weakening distance Dc (a parameter common
to several friction laws, including the rate-and-state friction law) are
inconclusive. Zhang et al. (2003) for example, found difficulties in
the determination of values for Dc due to constraints in kinematic
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inversion and were able to estimate only an upper bound on values of
Dc. Using a slip weakening friction law to compute the parameters
of a dynamic rupture model, Peyrat et al. (2004) conclude, ‘it may
not be possible to separate strength drop and Dc using rupture mod-
elling with current bandwidth limitations’. Using dynamic rupture
inversion of a synthetic earthquake to compute the initial stress and
Dc, Corish et al. (2007) can only estimate the average value of Dc.
Furthermore, they conclude that ‘there is a trade-off between the
average initial stress on the fault and the slip-weakening distance
that precludes identification of the exact values of either quantity
based on strong-motion records’.

Although there lacks a strong consensus made for a proper regime
of relevant parameter values, we develop the proper numerical
methods capable of handling the numerical challenges introduced
by the non-linearity of rate-and-state friction and are able to ex-
plore the parameter space quite deeply. This allows us to study the
Burridge–Knopoff spring and block model subject to this friction
law and analyse how each parameter influences the emergent be-
haviour. This in turn sheds light on the parameter values capable
of reproducing earthquake dynamics and may lead to a method for
determining appropriate values to be used in future dynamic rupture
simulations with more sophisticated models.

2 T H E 1 - D D I S C R E T E M O D E L

2.1 Extension of the single-block case

In Erickson et al. (2008) we conducted an in-depth study of the
parameters associated with a BK model of single spring-block sub-
ject to rate-and-state friction and discussed its ability to capture 1-D
earthquake motion. We began numerical simulations of the model
by using the version proposed by Madariaga (1998) of a single
spring-block slider. In this form one can view the block’s slip rela-
tive to the pulling force or driver plate moving at vp. Setting vp =
vo (the reference velocity in rate-and-state friction), the equations
of motion (slightly modified version than those given in Erickson
et al. 2008) coupled with ‘slip-law’ formulation of rate-and-state
friction (eq. 1) are given by

u̇ = v − v0

v̇ = (−1/M) (ku + σn [ f ∗ + 	 + a ln(v/vo)])

	̇ = −(v/Dc)(	 + b ln(v/vo))

⎫⎪⎪⎬
⎪⎪⎭

,

(4)

where the variables u and v correspond to the slip (relative to the
driver plate) and slip velocity. Here (and from this point on) we use
the large 	 notation, where 	 = b ln( v0θ

Dc
) and can be interpreted

as the change in interface strength from the reference friction f ∗

(Nakatini 2001). (This notation is more convenient and equivalent to
writing it in terms of the state variable θ in eq. 1). The parameter M is
the mass of the block, σ n is the normal stress, the parameters f ∗, Dc,
a and b are the parameters of the rate-and-state friction law described
in Section 1.2, and k is the spring stiffness. When compared to the
1-D equations of motion for an elastic layer of thickness H and shear
modulus G resting on a rigid substrate, a quasi-static approximation
reduces the problem to that of a spring-block model with spring
stiffness given by G/H (Putelat et al. 2008). In this context therefore,
the spring stiffness k can be considered as corresponding to the
linear elastic properties of the medium surrounding the fault (Scholz
2002). System (4) can be non-dimensionalized (see Erickson et al.

2008, for details) into the following form

˙̄u = v̄ − 1

˙̄v = −γ 2[ū + (1/ξ )( f̄ + 	̄ + ln(v̄))]

˙̄	 = −v̄(	̄ + (1 + ε) ln(v̄))

⎫⎪⎪⎬
⎪⎪⎭

,

(5)

where ū is now the non-dimensional slip of the block relative to the
driver plate, v̄ is the non-dimensional slip velocity and 	̄ = 	/a
is just a scaled value of the already non-dimensional strength. The
four internal parameters are

γ =
√

k/M(Dc/vo),

the non-dimensional frequency,

ξ = (k Dc)/A,

the non-dimensional spring constant,

ε = (B − A)/A

measures the sensitivity of the velocity relaxation and is a ratio of
the stress parameters in the rate-and-state friction law and

f̄ = f ∗/a

is the scaled steady-state friction coefficient. Although more in-
formation on A and B can be found in Section 1.2 and in Scholz
(2002), the analogy with earthquake motion is that the parameter ε

is determined by the ratio of the amount of stress dropped during an
earthquake to the stress increase that accompanies a sudden change
in fault velocity (see Fig. 1). Furthermore, this ratio implies that ε =
1/S, where S is the non-dimensional seismic ratio (Andrews 1976).
That a relationship between ε and S exists is important in light of
the fact that an increase in ε (equivalent to a decrease in S) instigates
a transition into chaotic behaviour. We found that when varying the
parameter ε in the single spring-block model under rate-and-state
friction causes the stationary state to undergo a Hopf bifurcation
into a periodic orbit. After ε is further increased, the system period
doubles into periodic orbits of 2, 4, 8, etc. After this period doubling
cascade, the system reaches a chaotic state for critical values ε. As-
suming that the friction law is responsible for the non-periodic
behaviour of earthquake events (like the conclusions made by
Carlson & Langer 1989), then dynamic modelling requires that
ε be in this chaotic regime.

In the case of a single block subject to rate-and-state friction,
critical values of ε were quite large (≈11). Thus we extend this
study to the case of many blocks, to see if chaos ensues for a wider
parameter range including smaller values of ε. This information
may give us insight into which features of this particular friction
law are preserved, lost or added when considering systems of larger
size.

We begin by deriving the discrete formulation of the Burridge–
Knopoff spring-block model subject to the slip law formulation of
rate-and-state friction. We find however, that in keeping ε fixed at
the small value of 0.5, the discrete system (ODEs) exhibits both
periodic and chaotic motion, where the system’s transition to chaos
is size-dependent, that is, how many blocks are considered. The
chain undergoes periodic motion when less than 20 blocks are
considered. Under the same system parameters however, the chain
will undergo chaotic motion when 20 or more blocks are incor-
porated, although this transition depends on the parameters under
consideration.
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2.2 Equations of motion

The following equations of motion are derived from a 1-D chain of
spring-connected blocks elastically coupled and driven by a plate
moving at a constant rate vp. The blocks slide along a rough surface
according to the slip law formulation of rate-and-state friction (see
Fig. 2) and the equations of motion for the j th block’s position xj

are given by

mẍ j = μ(x j+1 − 2x j + x j−1) − λ(x j − vpt) − Fj (ẋ j , 	 j )

Fj (ẋ j , θ j ) = σn

[
f ∗ + 	 j + a ln(ẋ j/vo)

]
	̇ j = −(ẋ j/Dc)(	 j + b ln(ẋ j/vo))

⎫⎪⎪⎬
⎪⎪⎭

,

(6)

where Fj is the rate-and-state friction law from eq. (1), μ is the spring
constant coupling the blocks, λ is the spring constant coupling each
block to the driver plate, and v0, a, b and Dc are the associated
frictional parameters, described in Section 1.2. The spring constants
μ and λ can be interpreted as the elastic properties across the
medium (see Section 2.1), xj is the position of the j th block, or its
slip from its initial starting position.

With the simplification made by setting vp = vo, the variable
xj has two components: xj = uj + vot where uj is the block’s slip
relative to the driving plate, and vot is the distance the plate has
moved in t units of time. For our purposes, we rewrite the equations
in terms of the variable uj, the j th block’s slip from its adjacent
point on the driver plate, resulting in the following equations

mü j = μ(u j+1 − 2u j + u j−1) − λu j − Fj (u̇ j , 	 j )

Fj (u̇ j , 	 j ) = σn

[
f ∗ + 	 j + a ln

(
u̇ j

vo
+ 1

)]
	̇ j = −((u̇ j + vo)/Dc)

(
	 j + b ln

(
u̇ j

vo
+ 1

))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(7)

where uj is now the j th block’s slip relative to the driver plate.
We non-dimensionalize the system in the manner of Madariaga

(1998) [as described in Erickson et al. (2008)] in terms of non-
dimensional variables given by u j = Lū j , u̇ j = vo ˙̄u j and t = L

vo
t̄ .

	 is already non-dimensional but scaled by the value a to simplify
the equations: 	 = a	̄. The non-dimensional equations are given
by

¨̄u j = γ 2
μ(ū j−1 − 2ū j + ū j+1) − γ 2

λ ū j

− (
γ 2

μ/ξ
)

( f̄ + 	̄ j + ln( ˙̄u j + 1))

˙̄	 j = −( ˙̄u j + 1)(	̄ j + (1 + ε) ln( ˙̄u j + 1))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (8)

where ū j is the non-dimensional slip of the j th block relative to the
driver plate,

γμ =
√

μ/m(Dc/vo)

and

γλ =
√

λ/m(Dc/vo)

are the non-dimensional frequencies (the subscripts on γ are to
remind the reader which spring constant they refer to—see Fig. 2),

ξ = (μDc)/A

is the non-dimensional spring constant,

f̄ = f ∗

a
is the scaled steady-state friction coefficient, and

ε = (B − A)/A

as before (see Sections 1.2 and 2.1 for more information on ε, A
and B).

2.3 Numerical methods

Because of the non-linearity imposed on eq. (8) by the logarithmic
term from rate-and-state friction, analytic integration cannot be
done even in the simplest case of a single block. For this reason, we
proceed by implementing a numerical method by first writing (8) as
a system of 3 first-order ODEs

˙̄u j = v̄ j

˙̄v j = γ 2
μ(ū j−1 − 2ū j + ū j+1) − γ 2

λ ū j

− (
γ 2

μ/ξ
)

( f̄ + 	̄ j + ln(v̄ j + 1))

˙̄	 j = −(v̄ j + 1)(	̄ j + (1 + ε) ln(v̄ j + 1))

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (9)

As mentioned in the previous section, rate-and-state friction has
introduced numerical challenges because the non-linearity of the
logarithmic term causes the system’s local Jacobian matrix to pos-
sess very large negative eigenvalues—a property that usually in-
dicates the presence of numerical stiffness (well documented in
Erickson et al. 2008; Noda et al. 2009; Rojas et al. 2009). During
our simulations conducted in Erickson et al. (2008) we found that
even with the use of an implicit numerical method suited for numer-
ically stiff problems, the time step was still restricted by accuracy
requirements. Even with a stable method, if the time step taken is too
large, then the algorithm returns numerical value of v̄ j < −1 and
the logarithmic term is undefined. For this reason, we use an em-
bedded fourth order explicit Runge–Kutta method on the ODEs in
eq. (9) whose step size adapts according to accuracy requirements.

N blocks are evenly spaced on a chain of length 20 dimensionless
spatial units. Since fault rupture is caused by small stress instabili-
ties along the fault surface and often propagate like a localized pulse
(Heaton 1990), we choose to represent the initial data as localized
departure from the equilibrium (or stationary) regime. The equilib-
rium regime is where the relative displacement ū j is constant for all

j and v̄ j = 	̄ j = 0. Thus the equilibrium solution is ū j = − f̄ γ 2
μ

ξγ 2
λ

, a

constant value we denote by ūo. Therefore the initial data is given
as departure from this state by a smooth Gaussian pulse centred at
the middle block

ū j (0) = ūo + e
−(x̄ j −10)2

σ2 , x̄ j = j(20/N )

for j = 1, . . . N , where σ = 1,

v̄ j (0) = 0, for j = 1, . . . N

Since ūo is negative, the chain’s equilibrium solution is behind the
driver plate. The Gaussian pulse corresponds to imposing an initial
stress perturbation in the initial position of each block from this
equilibrium position, the middle block having the greatest perturba-
tion. All have zero initial velocity (with respect to the driver plate).
Free boundary conditions imply that blocks on either end of the
chain are only influenced by the single block connecting them to
the chain, and their elastic coupling with the driver plate.

2.4 Transition to chaos

Because of a lack of insight into proper parameter values (explained
in Section 1.4), we explore the parameter space that allows for
more manageable numerical computation (i.e. where the parameters
associated with the non-linear terms are not too large). Numerical
integration is done for different amounts of blocks: N = 3, 9 and 20
blocks. Parameter values used here are fixed at γ μ = 0.5, γλ = √

0.2,
ξ = 0.5, ε = 0.5 and f̄ = 3.2. Figs 3, 4 and 5 correspond to
different amounts of blocks considered. For each figure, plot (a) is
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Figure 3. Solution to the ODEs (9) derived from a three block system with parameter values ε = 0.5, ξ = 0.5, γ μ = 0.5, γλ = √
0.2 and f̄ = 3.2. (a) Initial

data, where the Gaussian perturbation from equilibrium only affects the middle block. (b) Slip of all three blocks against time where the motion is periodic in
time, each block attaining the same amplitude. Negative values in relative slip correspond to the chain’s position being behind the driver plate, and slipping
almost to the point adjacent to the driver plate (where the relative slip would then be zero). (c) Slip of the middle block against time, where an initial transient
period exists during which the small instabilities introduced by the initial slip perturbation are amplified, then saturated by the system’s non-linearities and then
settle into periodic motion. (d) Middle block’s slip, velocity and state variable value in the phase space. Plots (c) and (d) emphasize the periodic motion that
this block undergoes.

the initial displacement of all N blocks and (b) is the slip of all N
blocks against time. Negative values in relative slip correspond to
the block’s position being behind the driver plate, while a relative
slip value close to zero corresponds to slipping almost to the point
adjacent to the driver plate. Plot (c) in Figs 3–5 is the contour
of the middle block’s slip against time and one can further view
the periodic or chaotic behaviour emerging, while plot (d) is the
phase space for the middle block’s slip, velocity and state variable.
Periodic orbits will appear as a single closed loop in the phase space,
while chaotic orbits will appear as a strange attractor (see Erickson
et al. 2008, for more explanation).

Fig. 3 shows the results from a system of three connected blocks.
After a transient period in which the initial perturbation is ampli-
fied, the non-linearities saturate this growth and the system settles
into the same periodic trajectory—suggesting that the blocks move
collectively. All three blocks undergo abrupt, periodic motion of
period approximately 20 temporal units and relative amplitude ap-
proximately four slip units. Recall that these non-dimensional time
and space variables are scaled by Dc/vo and Dc (respectively). The

blocks are stuck to the rough surface (thus the relative displace-
ment decreases) until the driver plate overcomes the static friction
holding each block in place, and the chain suddenly begins to slide.
The blocks slide forward, approaching their adjacent point to the
driver plate before slowing down due to frictional resistance. The
driver plate then moves beyond the chain and once the pulling force
overcomes static friction, the cycle begins again. Sudden and jerky
motion, reminiscent of stick-slip behaviour emerges as the blocks
respond to the driver plate. Under the same parameter combination
however, periodic motion occurs when considering the system of
nine blocks as viewed in Fig. 4, although it appears that the period
of the solution has undergone at least one period doubling bifur-
cation. In this case all nine blocks undergo periodic motion, but
their slip values reach different amplitudes—the blocks near the
centre of the chain do not slide as far as those near the end of the
chain.

For this fixed set of parameter values, the resulting motion sug-
gests periodic behaviour for values of N < 20. For N = 20 however,
the motion becomes chaotic. As seen in Fig. 5, each block follows
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Figure 4. Solution to the ODEs (9) derived from a 9 block system with parameter values ε = 0.5, ξ = 0.5, γ μ = 0.5, γλ = √
0.2 and f̄ = 3.2. (a) Initial data,

where the blocks are given an initial perturbation from equilibrium in the form of a smooth Gaussian pulse. (b) Slip of all nine blocks against time where after
a transient period, the chain settles into what appears to be periodic motion. Negative values in relative slip correspond to the chain’s position being behind the
driver plate, and slipping almost to the point adjacent to the driver plate (where the relative slip would then be zero). The blocks reach different amplitudes, the
centre block and blocks near the end reaching an amplitude of about three units, while the remaining blocks reach smaller amplitudes. (c) Slip of the centre
(fourth) block against time, where an initial transient period exists during which the small instabilities introduced by the initial slip perturbation are amplified,
then saturated by the system’s non-linearities and then settle into periodic motion. (d) Centre block’s slip, velocity and state variable value in the phase space.
Plots (c) and (d) emphasize the periodic motion that this block undergoes.

its own chaotic trajectory in time and the blocks appear to move
independently of each other—suggesting chaotic behaviour in space
as well. Further studies show that this transition to chaotic motion
varies, depending on the parameters considered. More specifically,
the fact that chaotic behaviour emerges at N = 20 is not univer-
sal; it depends on the parameters used. It is also important to note
that regardless of the type of motion these systems produce, one
can observe from Figs 3–5 that there is a transient period during
which small instabilities introduced by the initial slip perturbation
are amplified as energy enters the system. This amplification is then
saturated by the non-linearities present from the friction law. This
feature suggests that under these parameter values, the friction law
can be a mechanism responsible for causing even small instabilities
to grow into large, but finite events, similar to the conclusions made
by Carlson & Langer (1989) who stated that the velocity weak-
ening friction law was responsible for the amplification of small
heterogeneities in the initial spatial distribution, leading to chaotic
motion.

Further insight into these solutions is gained by computing the
Fourier power spectrum [see (Erickson et al. 2008) for details on
how the power spectrum is computed] as viewed in Fig. 6. We con-
sider the middle block in each chain of length 3, 9 and 20 blocks.
Fig. 6 shows the power spectrum normalized with respect to the
fundamental frequency (frequency with the most power) for the
system of 3, 9 and 20 blocks, and one can further view the periodic
or chaotic motion of these systems. Fig. 6(a) is the power spectrum
for three blocks showing its power concentrated at the dominant fre-
quency and at one harmonic, suggesting that the solution has period
2 (although visibly it appears to have period 1). Fig. 6(b) shows the
power spectrum (and corresponding zoom) for nine blocks where
there appears approximately eight peaks, suggesting periodic be-
haviour with period 8. Fig. 6(c) shows the power spectrum for the
system of 20 blocks, where broad-band noise is present, suggesting
chaotic motion.

We can view the chaotic behaviour in the power spectrum in
more detail by plotting the log–log plot of the power against the
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Figure 5. Solution to the ODEs (9) derived from a 20 block system with parameter values ε = 0.5, ξ = 0.5, γ μ = 0.5, γλ = √
0.2 and f̄ = 3.2. (a) Initial data,

where the blocks are given an initial perturbation from equilibrium in the form of a smooth Gaussian pulse. (b) Slip of all 20 blocks against time maintaining
what appears to be chaotic motion. Negative values in relative slip correspond to the chain’s position being behind the driver plate, and slipping almost to the
point adjacent to the driver plate (where the relative slip would then be zero). (c) Slip of the centre (tenth) block against time, where an initial transient period
exists during which the small instabilities introduced by the initial slip perturbation are amplified, then saturated by the system’s non-linearities and undergo
chaotic motion. (d) Centre block’s slip, velocity and state variable value in the phase space. Plots (c) and (d) emphasize the chaotic motion that this block
undergoes.

frequency. Fig. 6(d) shows this data for the chaotic solution from
the 20 block system. We see that the spectra for this system ex-
periences two regimes of decay. There is an initial period where
the power spectrum undergoes exponential decay (at least qualita-
tively), before converging to a line and undergoing a slower, alge-
braic (power-law) decay. Sigeti (1995) acknowledges the common
agreement that the power spectra computed from continuous-time
dynamic systems within the chaotic regime experience exponential
decay. That this is followed by a second regime in which a power-
law behaviour is present has also been seen in several dynamic
systems that exhibit chaos, like those documented in Valsakumar
et al. (1997). The power-law behaviour is a feature not uncommon to
many areas of geology and geophysics and evidence of a fractal dis-
tribution [see (Turcotte 1997) and references therein]. For instance,
the well known Gutenberg–Richter law for frequency–magnitude
earthquake distribution follows a power law, as does topography
(Turcotte 1997) and turbulent flow (Frisch 1995).

So far these results only suggest a transition to chaos, but a
true signature of chaotic behaviour is the existence of a positive
Lyapunov exponent. The idea is to quantify the rate of divergence
under the flow of two close by trajectories (sensitive dependence
on initial data), see Verhulst (2000) and Sandri (1996), among oth-
ers, for a more detailed explanation. For a continuous dynamical
system like that given by eq. (9), the linearized equations govern-
ing the evolution of a perturbation δ are given by the variational
equations

δ̇ = J(t, y)δ, (10)

where J(t, y) is the Jacobian matrix defined by the right side of
eq. (9). The variational equations are solved simultaneously with
eq. (9) and the maximal Lyapunov exponent is given by the following
limit (Oseledec 1968)

lim
t→∞

1

t
ln ‖δ(t)‖
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Figure 6. Normalized power spectra for the slip associated for (a) 3 blocks, (b) 9 blocks and (c) 20 blocks. (a) and (b) further emphasize the periodic behaviour
of the solutions to the model when considering 3 and 9 blocks. Both plots reveal a finite amount of peaks, with 1 or 2 strong peaks and several harmonics. (c)
Normalized power spectra for the slip associated with 20 blocks where a transition to chaos occurs, as broad-band noise is evidenced by the high number of
frequencies represented. (d) Log–log plot for power against frequency for the system of 20 blocks shows two regimes of decay. We see an initial period where
the power spectrum experiences (qualitatively) exponential decay, but this is followed by slower, algebraic (power-law) decay.

Numerical calculations of the maximal Lyapunov exponent for the
dynamic system given by eq. (9) for the discrete system of N = 3 and
9 blocks show that the maximal Lyapunov exponent decays towards
zero (thus periodic motion). Fig. 7 however, shows this exponent
for the system of 20 blocks and it is clear that it approaches a small
but positive value, implying chaotic motion.

3 T H E C O N T I N U U M F O R M U L AT I O N

3.1 Extension of the discrete model

As we have seen in the previous section, chaotic dynamics emerge
in the discrete formulation when the number of blocks is increased.
For this reason, we are interested in studying the dynamics of a con-
tinuum model to see if the behaviour undergoes qualitative changes
when considering infinitely many blocks. In this section, we derive
the non-linear wave equation from the Burridge–Knopoff spring
block system subject to the rate-and-state friction law. We find that
a transition to chaos also occurs when varying the parameter ε,
similar to what we found in Erickson et al. (2008) for the case of a

single block. The critical value of ε however, is much smaller than
that required for a single block.

3.2 Equations of motion

Going back to the dimensional ODEs given by eq. (7), we can derive
a continuous model for a chain of infinitely many blocks by taking
the continuum limit in the manner similar to Carlson & Langer
(1989) who considered the equilibrium spacing between the blocks
(denoted here by �x). Taking �x → 0 and m → 0 (the mass of
each block) derives a partial differential equation (PDE), where the
spring coefficient between blocks gets stiffer (μ ∼ 1

�x ), the spring
connecting each block to the driver plate gets weaker (λ ∼ �x).
Consequently the stress parameters A = σ na and B = σ nb decrease
like ∼�x. In this framework the ratio m

�x is the mass per unit length
of string, or linear density (Pain 1968) which is held constant. Then
we consider eq. (7) and the corresponding non-dimensional eq. (8)
when �x → 0 and m → 0, with the additional rescaling: x = Dcx̄ .
This yields our final equations of motion, given by the following
elastic wave equation for ū(x̄, t̄) under rate-and-state friction and
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Figure 7. Maximal Lyapunov exponent for N = 20 blocks. A positive
maximal Lyapunov exponent implies that close by trajectories diverge ex-
ponentially with a rate given by the value of the exponent. Clearly, as t →
∞, the exponent approaches a small but positive value, implying that the
behaviour for the system of 20 blocks is indeed chaotic.

its associated state variable evolution equation

∂2 ū
∂ t̄2 = c2 ∂2 ū

∂ x̄2 − γ 2
λ ū − (

γ 2
μ/ξ

) (
	̄ + f̄ + ln

(
∂ ū
∂ t̄ + 1

))
∂	̄

∂ t̄ = − (
∂ ū
∂ t̄ + 1

) (
	̄ + (1 + ε) ln

(
∂ ū
∂ t̄ + 1

))
}

,

(11)

where the final equations now involve the following finite-valued
parameters

c2 = lim
�x,m→0

(
μD2

c �x2
)
/
(
mv2

o

)
the square of the wave speed,

γ 2
μ

ξ
= lim

�x,m→0

(
√

μ/m(Dc/vo))2

(μDc)/A

is a finite ratio of the square of the non-dimensional frequency to
spring constant (as in Section 2.2),

γ 2
λ = lim

�x,m→0

(√
λ/m(Dc/vo)

)2
,

is the square of the second non-dimensional frequency,

ε = (B − A)/A

and

f̄ = f ∗

a

as before.

3.3 Numerical methods

To solve eq. (11) numerically, we first write it as a system of three
first-order equations in time

∂ ū
∂ t̄ = v̄

∂v̄

∂ t̄ = c2 ∂2 ū
∂ x̄2 − γ 2

λ ū − (
γ 2

μ/ξ
)

(	̄ + f̄ + ln(v̄ + 1))

∂	̄

∂ t̄ = −(v̄ + 1)(	̄ + (1 + ε) ln(v̄ + 1))

⎫⎪⎪⎬
⎪⎪⎭ . (12)

We discretize the PDE using the method of lines (Ascher &
Petzold 1998) and the spatial derivative ∂2 ū

∂ x̄2 is approximated using
finite differences. For the linear transport equation for instance, the
size of the spatial mesh is determined by the shortest wavelength

(Gustafsson 2008) and with a time step taken to maintain stability,
the numerical solution should converge under mesh refinement.
Although it has been studied for different problems in the rate-and-
state context (Rice & Ruina 1983; Rice 1993; Rice et al. 2001),
the non-linearities in our problem make this kind of analysis very
difficult. Since we have seen in previous sections that solutions to the
discrete model are highly dependent on the number of blocks N , it is
likely that these amounts of blocks are not sufficient to approximate
the continuous PDE and so we do many grid refinements until we
see little change in the numerical solution. Discretizing the interval
x̄ ∈ [0, 20] into M = 200 grid points, resulting in 200 ordinary
differential equations and assign the continuous version of the same
initial slip as the discrete system in Section 2 (chosen to represent
localized departure from equilibrium), with zero initial velocity

ū(x̄, 0) = ūo + e
−(x̄−10)2

σ2 , where σ = 1,

v̄(x̄, 0) = 0.

The free boundary conditions in the discrete model transfer to homo-
geneous Neumann boundary conditions: ∂ ū

∂ x̄ (t̄, 0) = ∂ ū
∂ x̄ (t̄, 20) = 0.

As mentioned in the previous section, this form of the initial data
was chosen to represent localized departure from the equilibrium
position and corresponds to slightly displacing the centre of the
continuum of blocks.

The spatial discretization yields the following system of ODEs

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v̄0

v̄1

·
·
v̄i

·
·
·

v̄M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̃ α

α β α

· · ·
· · ·

α β α

· · ·
· · ·

· · ·
α β̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ū0

ū1

·
·

ūi

·
·
·

ūM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− γ 2

ξ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	̄0 + f̄ + log(v̄0 + 1)

	̄1 + f̄ + log(v̄1 + 1)

·
·

	̄i + f̄ + log(v̄i + 1)

·
·
·

	̄M + f̄ + log(v̄M + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where α = c2

�x2 , β = −2 c2

�x2 −γ 2
λ , β̃ = − c2

�x2 −γ 2
λ and M = 200 (in

this study) is the number of spatial points in the discretization. Due
to such a large system of ODEs, we solved them in parallel using
the embedded Runge–Kutta scheme discussed in Section 2 (for a
summary of the parallel methods developed, see Erickson 2010).
With the goal in mind of answering whether or not the features
of the rate-and-state friction law are scale-dependent, we study the
critical values of ε that lead to aperiodic behaviour to see if the
transition to chaos occurs for smaller values.
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Figure 8. Parameter combination (c, ε, ξ, γμ, γλ) = (0.2, 0.02, 0.5, 0.5,
√

0.15) yields a stationary solution to the PDE (12). (a) Initial data is given in the
form of a Gaussian centred perturbation from equilibrium. (b) Slip of the entire chain against time. During the initial transient region, the chain is pulled
forward by the driver plate. But after this time, the entire chain settles on its equilibrium position behind the driver plate, and the entire chain slides along at a
constant rate with the moving plate. Thus relative slip values become constant and the relative velocity is zero.

3.4 Transition to chaos

Varying only the parameter ε, Fig. 8(a) shows the contour of a
stationary trajectory in the centre of space (x̄ = 10) as well as the
slip of the entire chain against time Fig. 8(b), while Figs 9 and 10
show plots of the initial data, the slip of the entire chain against
time, the contour plot and the phase space of the trajectory in the
centre of space (x̄ = 10). Parameter combination (c, ε, ξ, γμ, γλ) =
(0.2, 0.02, 0.5, 0.5,

√
0.15) yields a stationary solution as seen in

Fig. 8. The perturbation introduced from the initial displacement is
amplified as the chain is pulled forward by the driver plate during
an initial transient period. Because the friction along the surface is
a function of each point’s velocity v̄(x̄, t̄) and state variable 	̄(x̄, t̄),
each point responds differently in how far it slips. The centre of the
chain slips the greatest amount, relative to the driver plate, while the
points near the ends of the chain remain almost stationary (sliding
steadily with the driver plate). When the initial slip amplification is
saturated by the non-linearities, each point settles on its equilibrium
position ūo and the whole chain slides along at a constant rate with
the moving plate.

A bifurcation of this stationary state occurs when ε is increased
from 0.02 to 0.12, as viewed in Fig. 9 where a periodic solution
emerges. After a transient period, the chain oscillates periodically,
while remaining behind the driver plate and the points in the centre
and the ends attain the most extreme values. The smoothness in
the dynamics (see the phase space in Fig. 9d) represents a fluid-
like interaction between each point along the chain and the rough
surface it slides upon. The chain fluctuates in response to the driver
plate and the friction on the surface, undergoing periodic cycles
slowing down and then sliding forward again. For ε = 0.4, chaotic
motion appears in Fig. 10 and one can see each point along the chain
undergoing its own chaotic motion as waves of different amplitudes
propagate through the medium and interact with the boundary.

We can view these periodic and chaotic solutions further by com-
puting the associated power spectra. Fig. 11(a) is associated with
the periodic solution from Fig. 9, showing the normalized power
spectrum and what appears to be 1 dominant frequency indicating
period 1 behaviour. Fig. 11(b) is the power spectrum associated

with the chaotic solution from Fig. 10 showing peaks at many fre-
quencies. To view the power spectrum for the chaotic solution more
deeply we plot the log–log plot of the power against the frequency.
Fig. 11(c) shows the decay of the power spectra for the chaotic
solution experiencing exponential decay (at least qualitatively) for
a short time period, before converging to a line and decaying as a
power law (algebraic decay). See Section 2.4 for more on this type
of behaviour.

4 L O C A L I Z E D S O LU T I O N S

4.1 Solitons and breathers

During the studies conducted in Sections 2 and 3, we also observed
that in certain parameter regimes both the discrete and the continu-
ous formulations of the Burridge–Knopoff model subject to the slip
law formulation of rate-and-state friction exhibit solutions where
initial slip pulses remain localized in space. Like Español (1994)
who studied a BK model with velocity weakening friction, we also
found solutions that propagate like a travelling wave. The localized
solutions suggest the presence of solitonic behaviour, where initial
data in the form of a smooth Gaussian pulse tends to remain lo-
calized under certain parameter values. In the case of a travelling
wave we see evidence of a soliton, a solitary wave that maintains
its shape while it travels at a constant speed through the medium.
The solutions that remain localized in space and oscillate in time
however, are known as breathers.

The general definition of a soliton solution to a non-linear wave
equation is that it has three properties: it is a wave with permanent
form, that is localized in space for each fixed point in time, and if
two solitons meet, their forms are preserved after the interaction
(Mickens 2004). A breather, on the other hand, is a time-periodic,
exponentially decaying (in space) solution of a non-linear wave
equation (Kichenassamy 1991). Breather solutions are rare and the
only non-linear wave equation known to possess large breather so-
lutions is the sine-Gordon equation (see Birnir 1994; Birnir et al.
1994, and references therein).
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Figure 9. Parameter combination (c, ε, ξ, γμ, γλ) = (0.2, 0.12, 0.5, 0.5,
√

0.15) yields a periodic solution to the PDE in eq. (12). (a) Initial displacement is
the same as in as in Fig. 8(a) we observe that an increase in ε from 0.02 to 0.12 yields a bifurcation of the stationary state. (b) Slip of entire system against
time. During the initial transient region, the blocks are pulled forward by the driver plate, where their response to frictional resistance determines how far they
slip. But after this time, each block settles on a periodic response to the driver plate, alternating between sliding and slowing down in response to the pull of
the driver plate, and the roughness of the surface. (c) Contour plot of centre point on the chain and (d) phase space further suggest the periodic behaviour of
the system.

4.2 Significance of localized solutions

The significance of these types of solitary wave solutions was em-
phasized by Heaton (1990), who studied dislocation time histories
generated from models derived from earthquake waveforms. He
found that, contrary to crack-like dynamic rupture models where
the rise time was comparable to the entire duration of rupture along
the fault, dislocation rise times were only about 10 per cent of the
overall rupture duration. The most appropriate explanation for this
observation of short slip durations is that the rupture travels like a
self-healing pulse that propagates along the fault. Heaton suggests
that a dynamic friction law (he considers a law that is inversely
related to slip velocity) can be a mechanism for causing the fault
to heal itself shortly after the rupture passes through, resulting in a
localized pulse. The rest of this section is devoted to the exploration
of the space of parameter values for which these types of soliton or
breather solutions emerge for the continuum equation with the slip
law form of rate-and-state friction, eq. (12). These solutions can be

understood as a proxy for the propagation of the rupture front across
the fault surface during an earthquake and may determine a range
for suitable parameter values to be used in dynamic modelling of
earthquakes.

4.3 Localized solutions to discrete and continuous
formulation

As detailed in the introduction, Schmittbuhl et al. (1993) and
Español (1994) observed (among others) solitary wave-type so-
lutions when varying different parameters of the BK model sub-
ject to a velocity weakening friction law. Similar to the discoveries
described in these papers, we have also seen solitary wave and
localized solutions in both the discrete and the continuous mod-
els under the slip law formulation of the rate-and-state friction
law. Figs 12 and 13 show solutions from the ODEs and the PDE
under similar conditions, where solitary, localized or delocalized
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Figure 10. Parameter combination (c, ε, ξ, γμ, γλ) = (0.2, 0.4, 0.5, 0.5,
√

0.15) yields an aperiodic solution to the PDE in eq. (12). (a) Initial data is the same
as before (see Figs 8a and 9b), the blocks are slightly displaced from their adjacent points on the driver plate. The parameter ε has been increased from 0.12
(periodic motion) to 0.4. (b) Slip of entire system against time. During the initial transient region, the blocks are pulled forward by the driver plate but respond
chaotically to frictional resistance. (c) Contour plot of centre point on the chain and (d) phase space further suggest the chaotic behaviour of the system. Each
point in space appears to undergo independent chaotic motion—suggesting the presence of spatial as well as temporal chaos.

Figure 11. Normalized power spectra for periodic and aperiodic solutions to the PDE in eq. (11). (a) Power spectrum for the periodic solution shown in Fig. 9,
with one dominant peak suggesting period 1 behaviour. (b) Power spectrum for the chaotic solution show in Fig. 10, showing many high peaks and clusters of
harmonics. (c) Log–log plot for power against frequency for the chaotic solution to the PDE in eq. (11) shows two regimes of decay. We see an initial period
where the power spectrum experiences (qualitatively) exponential decay, but this is followed by slower, algebraic (power-law) decay.
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Figure 12. These four plots show the slip of a chain of 40 blocks with different parameter combinations. (a) The initial pulse split into two localized pulses
that travel quickly through the medium and interact with the boundary, suggesting solitonic behaviour. (b) The initial slip pulse travels throughout the medium
but the propagation is more similar to a crack, where the perturbation spreads throughout the medium until the whole chain is slipping. In (a) and (b) only the
values of γ 2

μ/ξ and γ 2
λ are varied, suggesting that the travelling pulse solutions are dependent (at least) on these parameters. (c) For a different set of parameter

values, the slip remains localized in space and the amplitude maintains its height. (d) The slip remains localized but the amplitude dies out. In this case the
initial slip perturbation decays over time, suggesting that under these parameter values, the friction law alone can be a mechanism to halt rupture propagation.

behaviour emerges. Initial data is assigned to both of our systems
in the form of a perturbation from equilibrium given by a smooth
Gaussian pulse, zero initial velocity and free boundary conditions
as given in Sections 2.3 and 3.3. This initial, localized pulse is
again intended to represent localized departure from equilibrium
and it tends to remain localized under certain parameter values,
suggesting the presence of solitonic or breather solutions. We are
interested in determining the parameter(s) on which this behaviour
depends.

In the next section, we find that solitary and localized behaviour
seems to be dependent on the ratio between the values of the param-
eters defined by γ 2

λ and γ 2
μ/ξ , indicating that the emergence of these

types of solutions may be directly affected by the parameters λ and
μ, (the spring constant connecting each block to the driver plate,
and the spring constant between blocks in the original, discrete for-
mulation). This coincides with the findings of Español (1994) who
found the localization dependent on the speed of sound l2 = μ

λ
.

In the case of the localized (breather) solutions, in some parameter

regimes the amplitude of this localized pulse decays over time, as
viewed in Figs 12(d) and 13(d).

Fig. 12 shows four different numerical solutions to the ODEs
(8) where a chain of 40 blocks is considered. In Fig. 12(a), we
see that for this set of parameter values, the initial Gaussian pulse
splits into two solitary waves that travel through the medium and
interact with the boundary. In Fig. 12(b) however, the initial pulse
does not propagate like a localized pulse, but more like a crack,
where the initial perturbation spreads throughout the medium until
the entire chain is slipping. Thus not all parameter combinations
yield localized or solitary wave like solutions. Figs 12(c) and (d)
show solutions where the slip does not propagate throughout the
medium, but remains localized or quasi-localized in the centre of
space, suggesting the presence of breather solutions. In these cases
the slip either dies out (as in Fig. 12d), or maintains its amplitude
and ‘breathes’ (seen in Fig. 12c).

We are interested if solitary or localized solutions occur for the
PDE in eq. (12) under similar conditions to the ODEs (8), or if the
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Figure 13. These four plots are the solutions to the PDE in eq. (12) corresponding to the parameter values used in the previous plot for the ODEs (a) the PDE
is initialized by a centred Gaussian pulse that splits into two waves that travel quickly throughout the medium and interact with the boundary. (b) The initial
slip pulse travels throughout the medium but the pulse does not remain localized. (c) For a different set of parameter values, the slip remains localized in space
and the amplitude maintains its height. (d) The slip remains localized but the amplitude dies out. In this case the initial slip perturbation decays over time,
suggesting that under these parameter values, the friction law alone can be a mechanism to halt rupture propagation.

qualitative behaviour changes in the continuum case. Fig. 13 shows
solutions to the PDE with the same parameter values and one can
see, when comparing these plots to those in Fig. 12, that for these
sets of parameter values the dynamics are fairly similar, although
we cannot compare them absolutely as the PDE is determined by
the additional parameter c.

To investigate the behaviour when two of these solitary waves
meet, we take a solution that resembles a soliton and initialize it
with two smooth Gaussian pulses, with different amplitudes. Fig. 14
shows the profiles at different times for the interaction of these two
pulses. We observe that each initial pulse splits into two waves that
propagate through the medium, maintaining the same shape even
after the interaction, suggesting solitonic behaviour.

We can study this localized behaviour in the non-linear regime
by fixing the wave speed c at a constant value, and observing the
behaviour of the solution when varying the driving term γ 2

λ, that
is, the term corresponding to the pull of the driver plate (and the
parameter responsible for loading energy into the system) and the

damping term γ 2
μ/ξ , the parameter controlling the amount of friction

acting on the system. With these parameters in mind, we can con-
trol the behaviour of the system by means of a single perturbation
parameter,

ζ = drive

damping
= γ 2

λ

γ 2
μ/ξ

= γ 2
λ ξ

γ 2
μ

,

the ratio of the drive to the damping.
We are interested in determining the role that ζ plays in the emer-

gence of these travelling waves or localized solutions. Fig. 15 shows
results from the solutions to the PDE in eq. (12) in a parameter-
varying study. Since increasing the control parameter ζ is analo-
gous to keeping all parameters fixed except for γ 2

λ or γ 2
μ/ξ , these

figures demonstrate the effect that the control parameter has on the
system. Fig. 15 shows a set of nine plots of solutions to the PDE
when the control parameter ζ = γ 2

λ/(γ μ
2/ξ ) is increased (from left

to right, or from bottom to top). One can observe that the plots
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Figure 14. Four plots showing the slip profile at different times, resembling the qualitative behaviour of a soliton. (a) Initialized with two smooth Gaussian
pulses. (b) Each wave splits into two waves that maintain the same shape after they pass through each other, seen in (c) and (d), suggesting solitonic behaviour.

in the left column illustrate how the initial Gaussian pulse splits
into two waves that travel outwards through the boundary. But in
moving from left to right (or from bottom to top), the slip pulse
is squeezed together so that it takes longer to interact with the
boundary. This is evidence that an increase in the control parame-
ter will cause the slip to localize, and if ζ is further increased, the
pulse will be damped out (as seen in the column on the right of
Fig. 15). This makes sense as one can consider increasing ζ as anal-
ogous to increasing γ μ (effectively increasing the pull of the driver
plate so that it forces the chain of blocks to slide at steady state).
Thus the localized solutions seem to be dependent on a balance be-
tween the drive and damping parameters. One can further view this
effect as analogous to crossing under the Hopf bifurcation plane
seen in Fig. 16, where parameter combinations yield stationary
solutions.

4.4 Analytical investigation of soliton solutions

In this section, we investigate whether we can analytically determine
the parameter spaces for which these solitary wave solutions occur.

The original PDE (written with wave speed c) is

∂2 ū
∂ t̄2 = c2 ∂2 ū

∂ x̄2 − γ 2
λ ū − (

γ 2
μ/ξ

) (
f̄ + 	̄ + ln

(
∂ ū
∂ t̄ + 1

))
∂	̄

∂ t̄ = − (
∂ ū
∂ t̄ + 1

) (
	̄ + (1 + ε) ln

(
∂ ū
∂ t̄ + 1

))
}

.

(13)

We now consider a solution to (13) of the form h(x̄ + cot̄), that is, a
soliton travelling solution with wave speed co. Letting ψ = x̄ + cot̄ ,
and plugging h into the PDE yields the following ODE(
c2

o − c2
)

d2h
dψ2 = −γ 2

λ h − (
γ 2

μ/ξ
) (

f̄ + 	̄ + ln
(

co
dh
dψ

+ 1
))

co
d	̄

dψ
= −

(
co

dh
dψ

+ 1
) (

	̄ + (1 + ε) ln
(

co
dh
dψ

+ 1
))

⎫⎪⎬
⎪⎭ .

(14)

This second-order ODE can be rewritten as a system of first-order
ODEs by letting v = dh

dψ
.

dh
dψ

= v(
c2

o − c2
)

dv

dψ
= −γ 2

λ h − (
γ 2

μ/ξ
)

( f̄ + 	̄ + ln(cov + 1))

d	̄

dψ
= − 1

co
(cov + 1)(	̄ + (1 + ε) ln(cov + 1))

⎫⎪⎪⎬
⎪⎪⎭ . (15)

C© 2011 The Authors, GJI, 187, 178–198

Geophysical Journal International C© 2011 RAS



194 B. A. Erickson, B. Birnir and D. Lavallée

Figure 15. For the continuum model, these nine plots show the localization of slip as a function of the control parameter ζ (the ratio of drive to damping
parameters). Moving from left to right (or bottom to top) corresponds to increasing the value of ζ = γ 2

λ/(γ μ
2/ξ ). Moving from left to right we see that increasing

the drive tends to squeeze the pulse together, and also decay the pulse’s amplitude. Moving from top to bottom however shows that increasing the damping
term causes the pulse to delocalize much faster, and (at least in the case of the far left column) causes the pulse to split into two waves that travel like a soliton.

To do stability analysis of the ODE (15), we look at the Jacobian
matrix of eq. (15)

D f =

⎡
⎢⎢⎣

0 1 0
−γ 2

λ

c2
o−c2

−γ 2
μco

ξ(c2
o−c2)(cov+1)

−γ 2
μ

ξ(c2
o−c2)

0 −(	̄ + (1 + ε)(1 + ln(cov + 1))) − cov+1
co

⎤
⎥⎥⎦

and Df evaluated at the stationary solution (h, v,	) =(
− γ 2

μ f̄

ξγ 2
λ

, 0, 0
)

yields

J =

⎡
⎢⎢⎣

0 1 0
−γ 2

λ

c2
o−c2

−γ 2
μco

ξ(c2
o−c2)

−γ 2
μ

ξ(c2
o−c2)

0 −(1 + ε) − 1
co

⎤
⎥⎥⎦ .

It is important to note that with a few assumptions made for the
values of the parameters c and c0, matrix J is analogous to matrix
A obtained in Erickson et al. (2008), for the equations governing
a single block and a similar bifurcation analysis can be done (see
Erickson et al. 2008, for more details): matrix J has three dis-

tinct eigenvalues: one real eigenvalue and two complex conjugates.
When the real part of the complex conjugates crosses the imaginary
axis, the system in eq. (15) undergoes a Hopf bifurcation from a sta-
tionary solution into a periodic orbit [see (Guckenheimer & Holmes
1983; Perko 2001)], as occurred in the single-block case in Erickson
et al. (2008).

Fig. 16 shows the parameter combinations that will yield bifur-
cations of the stationary state. Not surprisingly, it appears similar to
the surface computed in Erickson et al. (2008) for the single block
case, thus a similar analysis of the bifurcation plane can be made.
Parameter combinations that lie below this plane will generate sta-
tionary solutions to eq. (15), but once the parameter values have
crossed this Hopf bifurcation plane, we see either solitary wave
type solutions or localized solutions like those in the Figs 12(a)–(c)
and 13(a)–(c). We can use the information obtained from the study
of the single block [see Erickson et al. (2008)] to predict that a
similar route to chaos exists for the ODE (15) derived from con-
sidering soliton solutions to the PDE (11). In this case, increasing
the value of the parameter ε will correspond to a period doubling
cascade into chaos, resulting in solitary wave solutions that are
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Figure 16. (a) and (b) show two different views of the bifurcation surface associated with eq. (15), where γ := γ μ = γ λ. Parameter combinations that lie
below the surface will generate stationary solutions, while a combination above the surface will correspond to a Hopf bifurcation, and yield a periodic orbit.
That it is a skewed surface for the parameter space we consider implies that the Hopf bifurcation is dependent on all three parameters ε, ξ and γ .

aperiodic in time, although ε will need to be on the order of ≈11, as
before. The assertion of this result would suggest that solitary wave-
type solutions in the continuum formulation undergo behavioural
changes on the same order of parameter values as in the single block
case.

5 D I S C U S S I O N : I M P L I C AT I O N S O N
T H E S C A L I N G O F T H E F R I C T I O N L AW

It has been widely recognized that our understanding of the physical
mechanisms controlling earthquake rupture depends significantly
on understanding the role of friction (see Brace & Byerlee 1966;
Scholz 1998, among others). We believe that earthquakes and the
resulting ground motions are affected by at least four factors, includ-
ing initial stress, fault geometry, fault frictional behaviour and wave-
propagation path effects. Of these, geometry and wave-propagation
are somewhat possible to predetermine, the spatial distribution of
the initial stress can be modelled according to the stochastic model
discussed in Lavallée et al. (2006) (for applications see Schmedes
et al. 2010a,b), but fault friction is still a major unknown. This
makes the knowledge of fault friction a cornerstone of understand-
ing earthquake behaviour. As highlighted in Harris (2004), earth-
quakes are the result of processes in the earth’s crust that have
evolved over multiple scales in both time and space. Understanding
the physics of earthquakes requires the study of these processes
at all scales from both an observational and a dynamic modelling
perspective.

That the transition to chaos for the discrete and continuum model
with the slip law formulation of rate-and-state friction ensues for a
smaller parameter value than in the case of a single block may be
an indication that a careful rescaling of the friction law is necessary,
prior to attaching the friction law to full scale models. A similar
conclusion was made by Schmittbuhl et al. (1996) who studied a
‘hierarchical array of blocks’ and found that velocity weakening
friction was scale dependent. These authors studied the bulk re-
sponse of a 2-D elastic body sheared over a rough surface defined
by a the velocity weakening friction law. They found that this fric-
tion law can produce Coulomb-like behaviour at the system scale.
More specifically, the velocity dependence of the body at the inter-
face is lost or blurred when moving to larger scales. They conclude

by emphasizing the need to study scale dependent effects of friction
laws with an intrinsic length scale. Our results suggest that when
implementing rate-and-state friction in dynamic rupture models, it
is possible that qualitative behaviour can be lost or altered when
considering full-scale models. However it is possible to investigate
the evolution of the scaling properties of numerical solutions to
equations involving the friction law. Unfortunately, the presence of
non-linear terms in the mathematical formulation of friction laws
like the one considered here makes it very difficult to define a trans-
formation from laboratory scales to full scale models of the earth’s
faults. Another hypothesis will consist of formulating an ‘effective
friction law’ for length scales on the order of 100 m, much like
the pioneering work of Campillo et al. (2001) who explored how
small-scale variability in the parameters of the friction law can be
renormalized to larger length scales.

6 C O N C LU S I O N S

We have derived the equations for both the discrete and the continu-
ous formulations of a 1-D Burridge & Knopoff (1967) spring-block
model subject to the slip law version of the rate-and-state friction
law. In the discrete case we observe a transition to chaos when
varying the system size, that is, the number of blocks N . For N <

20 blocks, periodic behaviour emerges. When N is increased to 20
however, this periodic behaviour is lost and chaos ensues, as further
asserted by the broad-band noise in the power spectrum (see Fig. 6)
and the presence on a positive maximal Lyapunov exponent (see
Fig. 7). This transition occurs for a fixed set of parameter values
and we see that the small value of ε = 0.5 will generate chaotic
motion, as long as the system size N is sufficiently large. This
value is much smaller than that required for chaotic motion that we
found in the single block case (Erickson et al. 2008), where ε ≈ 11.
This suggests that, in contrast to the conclusions made by Lapusta
& Rice (2003) who found only periodic behaviour emerging from
rate-and-state friction, dynamic rupture modelling with this friction
law can produce chaotic dynamics when considering a wide range
of parameter values with an increase in system size.

Also, these results suggest that chaotic regimes in the BK model
under the slip law version of rate-and-state friction is a function
of the number of blocks considered, similar to the conclusions of
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Schmittbuhl et al. (1993) who studied a similar block-spring model
subject to a velocity weakening friction law and found that chaos
was also dependent on the system size. It should be emphasized
that this information reveals that this friction law may very well
be scale-dependent, as we have seen different dynamics emerge
in systems with different numbers of blocks. That the transition
to chaos appears highly sensitive to the number of blocks N as
well as the value of the parameter ε suggests that one should take
into consideration their system size when choosing the parameters
for a dynamic rupture model, or find another means of scaling
the friction law appropriately. Because chaotic solutions appear for
smaller values of this specific parameter than in the case for a single
block, it is probable that chaotic dynamics emerge for a broader
range of parameter values for systems of larger size.

For the continuum model derived from this spring-block model
subject to the slip law version of rate-and-state friction, a bifurca-
tion from a stationary state (steady sliding), to periodic, to chaotic
behaviour can be observed when the parameter ε is increased, as
further asserted in the power spectrum (see Fig. 11). Recall that
ε is the ratio of the stress parameters (B − A) and A in the rate-
and-state friction law. Our results in this section show that ε = 0.4
is sufficient for chaos in the PDE, a much smaller value than that
required for chaotic motion in the single block system in Erickson
et al. (2008), where ε ≈ 11. Although it is difficult to compare
absolutely the discrete and the continuum model due to the second
model’s additional parameter c, in either case the critical value for
ε is much smaller than in the case of a single block, where ε ≈ 11.
Our numerical solutions so far suggest that the critical value of the
parameter ε necessary to induce chaos decreases as a function of N ,
the numbers of blocks considered. In the future it will be interesting
to find the relationship between N and the critical value for ε, while
keeping the other parameters fixed [for a hypothetical curve, see fig.
25 in Erickson (2010)]. In particular, it will be important to establish
if this relationship depends on the values taken by the other param-
eters. Given the scale size of the model, the corresponding value
taken by ε could be a useful method for controlling the observation
of periodic or chaotic earthquake ruptures.

Furthermore, when we consider that ε = 1/S, where S is the non-
dimensional seismic ratio (Andrews 1976), smaller values of ε that
yield chaotic dynamics correspond to a broader range of S values.
We found that in the single-block case, critical values of ε were large,
corresponding to S ≈ 1

10 or smaller. Although we concluded in
Erickson et al. (2008) that earthquake ruptures generated by chaotic
simulations from a single block model correspond to velocities
propagating at the supershear speed (see among others, Freund
1979; Dunham 2007), for these models with more than one block
chaotic regimes can be reached for a larger range of S values. In
these cases, we find chaotic regimes corresponding to S = 2 or
smaller.

In addition to these transitions from periodic to chaotic behaviour,
we have also observed that both the discrete and the continuous for-
mulation of the Burridge–Knopoff spring-block model under the
slip law version of rate-and-state friction exhibit solutions where an
initial, smooth Gaussian pulse can either split into two travelling
waves that propagate as solitons, or remain localized in space, as
breathers. In spite of having only explored a small region of the pa-
rameter space, we were able to determine which internal parameters
seem to affect this behaviour. Because these solitonic or localized
solutions can be understood as a proxy for the propagation of the
rupture across the fault during an earthquake (Heaton 1990), this
result may also suggest a possible range for parameters that could be
used in future earthquake modelling. By narrowing the parameter

space to values that yield localized solutions, we may have a method
for assigning appropriate values to parameters that have, thus far,
been difficult to determine.

Furthermore, a robust friction law is vital for dynamic rupture
modelling of earthquakes, but evokes the question of whether or
not small-scale laboratory derived friction laws are appropriate for
full-scale modelling and modelling at high slip speeds. We have
shown that finding pulse-like solutions in the continuum model
reduces to studying the bifurcation analysis of a single block. Thus
it is possible that using parameters relevant to the single block case
under rate-and-state friction may be directly applicable to large-
scale models if one is interested in generating pulse-like solutions.
This knowledge could be an indirect way for validating the use of
a small-scale, laboratory derived friction law in full-scale dynamic
rupture models.

An additional observation we made in this study is that for certain
parameter combinations, the initial slip pulse in the BK model with
rate-and-state friction tends to die over time (as in the plots in the
bottom right of Figs 12 and 13). Now the earthquake rupture pro-
cess can be roughly divided into three parts: nucleation, propagation
and arrest. But although rupture can be initiated in dynamic mod-
els of earthquakes by stress perturbations in initial conditions, an
appropriate technique for terminating rupture is still unclear. Many
dynamic models of earthquakes impose an artificial mechanism for
stopping the rupture. The stopping criterion invoked by Ma et al.
(2008) for example, solves for a traction value that will force the
slip rate to die at the next time step during the dynamic rupture.
The dying pulse in the bottom right plot of Figs 12 and 13 suggest
that the friction law alone can provide a sufficient mechanism for
halting the rupture process. In these cases where the slip amplitude
decays, the dying pulse suggests that a localized rupture can propa-
gate along the fault and be attenuated over a finite fault length. The
plots in the bottom right of Figs 12 and 13 suggest that properly
choosing parameters of the friction law will be sufficient in halting
rupture propagation. Having determined the parameter responsible
for causing the slip to decay naturally, this parameter can be made
a function of time and/or space to have a method for dynamically
terminating slip events.

Under the slip law formulation of rate-and-state friction, we may
have discovered only a small subset of solutions to both the dis-
crete and the continuous model, but there is no question that even
in one spatial dimension, a rich phenomenology of dynamics ex-
ists. Furthermore, the presence of chaotic regimes and localized
solutions are of great importance because they help justify the use
of a relatively simple model in studies of fault friction, whereas
more sophisticated dynamic models may be computationally
limited.
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