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The Deterministic Navier-Stokes Equations

A general incompressible fluid flow satisfies the
Navier-Stokes Equation

ut +u ·∇u = ν∆u−∇p
u(x ,0) = u0(x)

with the incompressibility condition

∇ ·u = 0,

Eliminating the pressure using the incompressibility
condition gives

ut +u ·∇u = ν∆u +∇∆
−1trace(∇u)2

u(x ,0) = u0(x)

The turbulence is quantified by the dimensionless
Reynolds number R = UL

ν



Turbulence

Birnir

The
Deterministic
versus the
Stochastic
Equation

The Form of
the Noise

The
Kolmogorov-
Obukov
Scaling

The
generalized
hyperbolic
distributions

Comparison
with
Simulations
and
Experiments.

Boundary Layers and Turbulence
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The Stochastic Navier-Stokes Equations

In turbulent fluids the laminar solution is unstable
Small noise is magnified by the fluid instability and the
saturated by the nonlinearities in the flow and in the
Navier-Stokes equations
It was pointed out by Kolmogorov [8] that it is more
useful in turbulent flow to consider the velocity u(x , t) to
be a stochastic process
Then it satisfies the stochastic Navier-Stokes equation

du = (−u ·∇u + ν∆u +∇∆
−1trace(∇u)2)dt +dft

u(x ,0) = u0(x)

dft is the noise in fully developed turbulence
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The central limit theorem

We construct the noise using the central limit theorem
Split the torus T3 into little boxes and consider the
dissipation to be a stochastic process in each box
By the central limit theorem the average

Sn =
1
n

n

∑
j=1

pj

converges to a Gaussian random variable as n→ ∞

This holds for any Fourier component (ek ) and the
result is the infinite dimensional Brownian motion

df 1
t = ∑

k 6=0
c

1
2
k dbk

t ek (x)
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Intermittency and the large deviation principle

In addition we get intermittency of the dissipation
If these excursions are completely random then they
are modeled by Poisson process with the rate λ

Applying the large deviation principle, we get
exponentially distributed processes, with rate |k |1/3

This also holds in the direction of each Fourier
component and gives the noise

df 2
t = ∑

k 6=0
dkdν

k
t ek (x)
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Intermittency and velocity fluctuation

So far our noise is additive. There is also multiplicative
noise due to velocity fluctuation
The multiplicative noise, models the excursion (jumps)
in the velocity gradient
If these jumps are completely random they should be
modeled by a Poisson process ηk

t
Nk

t denotes the integer number of velocity excursion,
associated with k th wavenumber, that have occurred at
time t .
The differential dNk (t) = Nk (t +dt)−Nk (t) denotes
these excursions in the time interval (t , t +dt ].
The process

df 3
t =

M

∑
k 6=0

Z
R

hk (t ,z)N̄k (dt ,dz),

gives the multiplicative noise term
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Stochastic Navier-Stokes with Turbulent Noise

Adding the two types of additive noise and the
multiplicative noise we get the stochastic Navier-Stokes
equations describing fully developed turbulence

du = (ν∆u−u ·∇u +∇∆
−1tr(∇u)2)dt

+ ∑
k 6=0

c
1
2
k dbk

t ek (x)+
M

∑
k 6=0

dkdν
k
t ek (x)

+ u(
M

∑
k 6=0

Z
R

hk N̄k (dt ,dz))

u(x ,0) = u0(x)

Each Fourier component ek comes with its own
Brownian motion bk

t and Poisson process νk
t
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Computation of the measure

Now the linearized equation

dz = (ν∆z−u ·∇z−z ·∇u +2∇∆
−1tr(∇u∇z)dt

+ ∑
k 6=0

(c
1
2
k dbk

t +dkdν
k
t )ek (x) (1)

+ z( ∑
k 6=0

Z
R

hk (t ,z)N̄k (dt ,dz))

z(0) = z0

has (almost) the same invariant measure
as the stochastic Navier-Stokes equation for velocity
differences.



Turbulence

Birnir

The
Deterministic
versus the
Stochastic
Equation

The Form of
the Noise

The
Kolmogorov-
Obukov
Scaling

The
generalized
hyperbolic
distributions

Comparison
with
Simulations
and
Experiments.

Solution of the Stochastic Linearized
Navier-Stokes

We solve (1) using the additional help of the
Feynmann-Kac formula, and Cameron-Martin (or
Girsanov’s Theorem)
The solution is

z = eKte
R t

0 dqMtz0

+ ∑
k 6=0

Z t

0
eK (t−s)e

R t
s dqMt−s(c

1/2
k dβ

k
s +dkdν

k
s )ek (x)

K is the operator K = ν∆+2∇∆−1tr(∇u∇)
K generates a semi-group by the perturbation theory of
linear operators (Kato)
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Cameron-Martin and Feynmann-Kac

Mt is the Martingale

Mt = exp{−
Z t

0
u(Bs,s) ·dBs−

1
2

Z t

0
|u(Bs,s)|2ds}

Using Mt as an integrating factor eliminates the inertial
terms from the equation (1)
The Feynmann-Kac formula gives the exponential of a
sum of terms of the formZ t

s
dqk =

Z t

0

Z
R

ln(1+hk )Nk (dt ,dz)−
Z t

0

Z
R

hkmk (dt ,dz),

by a computation similar to the one that produces the
geometric Lévy process, see [12], mk the Lévy
measure.
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The log-Poisson processes

The form of the processes
e

R t
0

R
R ln(1+hk )Nk (dt ,dz)−

R t
0

R
R hk mk (dt ,dz) was found by She

and Leveque [13], for hk = β−1,
Nk

t counts the number of jumps, with the meanZ
R

mk (t ,dz) =−γ ln |k |
β−1

,
Z t

0

Z
R

hkNk (ds,dz) = Nk
t ln(β)

It was pointed out by She and Waymire [14] and by
Dubrulle [6] that they are log-Poisson processes.

e
R t

0
R
R ln(1+hk )Nk (dt ,dz)−

R t
0

R
R hk mk (dt ,dz) = eNk

t lnβ+γ ln |k |= |k |γβNk
t
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The Spectral Theory of the Operator K

Suppose that
E(‖u‖23

2
+)≤ C1 (2)

then the operator K generates contration semi-groups
denoted eKt . We get using the bound [1],[4],

E(‖u‖211
6

+(t))≤ C (3)

Lemma (The Inertial Range)

The spectrum of the operators K satisfies the estimate

|λk +ν4π
2|k |2| ≤ C|k |2/3 (4)
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Computation of the structure functions

Lemma (The Kolmogorov-Obukov scaling)

The scaling of the structure functions is

Sp ∼ Cp|x −y |ζp ,

where
ζp =

p
3

+ τp =
p
9

+2(1− (2/3)p/3)

p
3 being the Kolmogorov scaling and τp the intermittency
corrections. The scaling of the structure functions is
consistent with Kolmogorov’s 4/5 law,

S3 =−4
5

ε|x−y |

to leading order, were ε = dE
dt is the energy dissipation
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The first few structure functions

S1(x ,y , t) =
2
C ∑

k∈Z3\{0}
dk

(1−e−λk t)
|k |ζ1

sin(πk · (x−y)).

∑k∈Z3\{0}dk < ∞, and for |x−y | small,

S1(x ,y ,∞)∼ 2
C ∑

k∈Z3\{0}
dk |x−y |ζ1 ,

where ζ1 = 1/3+ τ1 ≈ 0.37. Similarly

S2(x ,y ,∞)∼ 2πζ2

C ∑
k∈Z3

[ck +
2d2

k
C

]|x −y |ζ2 ,

when |x−y | is small, where ζ2 = 2/3+ τ2 ≈ 0.696.
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The higher order structure functions

All the structure functions are computed in a similar manner.
If p = 2n +1 is odd,

Sp =
2p

Cp ∑
k∈Z3

dk
p (1−e−2λk t)p

|k |ζp
sinn(πk · (x−y))

to leading order in the lag variable |x −y |. If p = 2n is even,
Sp is

∑
k∈Z3

[
2n

Cn cn
k
(1−e−2λk t)n

|k |ζp
+

2p

Cp dk
p (1−e−λk t)p

|k |ζp
]sinp(πk ·(x−y)),

to leading order in |x −y |.
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The Kolmogorov-Obukov scaling hypothesis

The Kolmogorov-Obukov scaling with the intermittency
corrections τp, is

Sn(l) = Cplζp , ζp =
p
3

+ τp =
p
9

+2(1− (2/3)p/3) (5)

where l is the lag variable l = |x−y |.
The coefficients Cp are not universal but depend on the
cks and dks that in turn depend on the large eddies in
the turbulent flow
Cp = 2pπ

ζp

Cp ∑k∈Z3\{0}dk
p or Cp = 2nπ

ζp

Cn ∑k∈Z3 [cn
k + 2n

Cn dk
p]
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Kolmogorov’s refined scaling hypothesis

In [9, 11] Kolmogorov and Obukhov presented their
refined similarity hypothesis

Sp = C ′p < ε̃
p > lp/3

where l is the lag variable and ε̃ is an averaged energy
dissipation rate
It can be shown, see [5], that by defining ε̃

appropriately, this gives

Sp = C ′p < ε̃
p > lp/3 = Cplζp

where the coefficients C ′p now are universal

Sp(t ,T , l) = Cplζp +Dp(t)T γp , γp =
p
6

+3(1− (2/3)p/3)
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The Invariant Measure and the Probability
Density Functions (PDF)

The above computation is a computation of a test
invariant measure, that the real invariant measure
should be absolutely continuous with respect to
Hopf [7] write down a functional differential equation for
the characteristic function of the invariant measure
The quantity that can be compared directly to
experiments is the PDF

E(δju) = E([u(x +s, ·)−u(x , ·)] · r) =
Z

∞

∞

fj(x)dx ,

j = 1, if r = ŝ is the longitudinal direction, and j = 2,
r = t̂ , t ⊥ s is a transversal direction
Using Jacobi’s identity and the asymptotics of the
moments, we compute the PDF directly
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Computing the PDF from the characteristic
function

Taking the characteristic functions of the measure of
the stochastic processes in Equation (1), we get

f̂ (k)∼ k1−ζ1e−δk

Translating this function and taking the inverse Fourier
transform gives

f (x)∼ e−d |x |e−bx

(x− iδ)2−ζ1
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Inserting a Gaussian

The probability density function (PDF) of the
components of the velocity increments is a generalized
hyperbolic distribution, see Barndorff-Nilsen [2]
Letting α,δ→ ∞, in the formulas for fj(x) below, in such
a way that δ/α→ σ, we get that

fj →
e−

(x−µ)2
2σ

√
2πσ

eβ(x−µ).

The exponential tails of the PDF are caused by
occasional sharp velocity gradients (rounded of shocks)
The cusp at the origin is caused by the random and
gentile fluid motion in the center of the ramps leading
up to the sharp velocity gradients, see Kraichnan [10]
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The Probability Density Function (PDF)

Lemma

The PDF is a generalized hyperbolic distribution, λ = 1−ζ1:

f (xj) =
(δ/γ)1−ζ1

√
2πK1−ζ1

(δγ)

K1−ζ1
(α

√
δ2 +(xj −µ)2)eβ(x−µ)

(
√

δ2 +(xj −µ)2/α)1−ζ1

(6)

where K1−ζ1
is modified Bessel’s function of the second

kind, γ =
√

α2−β2, ζ1 the scaling exponent of S1,

f (x)∼ (δ/γ)1−ζ1

2πK1−ζ1
(δγ)

Γ(1−ζ1)21−ζ1eβµ

(δ2 +(x−µ)2)1−ζ1
for x << 1

f (x)∼ (δ/γ)1−ζ1

2πK1−ζ1
(δγ)

eβ(x−µ)e−αx

x3/2−ζ1
for x >> 1
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Existence and Uniqueness of the Invariant
Measure

We now compare the above PDFs with the PDFs found
in simulations and experiments.
The direct Navier-Stokes (DNS) simulations were
provided by Michael Wilczek from his Ph.D. thesis, see
[15].
The experimental results are from Eberhard
Bodenschatz experimental group in Göttingen.
We thank both for the permission to use these results
to compare with the theoretically computed PDFs.
A special case of the hyperbolic distribution, the NIG
distribution, was used by Barndorff-Nilsen, Blaesild and
Schmiegel [3] to obtain fits to the PDFs for three
different experimental data sets.
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The PDF from simulations and fits for the
longitudinal direction
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Figure: The PDF from simulations and fits for the longitudinal
direction.
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The log of the PDF from simulations and fits for
the longitudinal direction
Compare Fig. 4.5 in [15]
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Figure: The log of the PDF from simulations and fits for the
longitudinal direction, compare Fig. 4.5 in [15].



Turbulence

Birnir

The
Deterministic
versus the
Stochastic
Equation

The Form of
the Noise

The
Kolmogorov-
Obukov
Scaling

The
generalized
hyperbolic
distributions

Comparison
with
Simulations
and
Experiments.

The PDF from simulations and fits for a
transversal direction
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Figure: The PDF from simulations and fits for a transversal
direction.
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The log of the PDF from simulations and fits for
the a transversal direction
Compare Fig. 4.6 in [15]
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Figure: The log of the PDF from simulations and fits for the a
transversal direction, compare Fig. 4.6 in [15].
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The PDF from experiments and fits
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Figure: The PDF from experiments and fits.
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The log of the PDF from experiments and fits
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Figure: The log of the PDF from experiments and fits.
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The Artist by the Water’s Edge
Leonardo da Vinci Observing Turbulence
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