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Early Investigation of Empirical Friction Laws

• The late 1970s saw an increased interest in stick-slip instabilities
present in laboratory rock experiments as a means of understanding
earthquake ruptures.

• Laboratory measurements suggested both the velocity dependence of
dynamic friction and time dependence of static friction - resulting in
the need for a new framework in which to understand rock friction.

• Dieterich, Ruina, Rice and others used these experiments as a means
to formulate constitutive laws capable of describing the frictional
stress when rocks were sheared against each other or over a surface
[Dieterich (1978), Ruina (1983)].
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Early Investigation of Empirical Friction Laws

Rate and State Friction:

µ = µo + a ln(
V

Vo
) + b ln(

Voθ

Dc
) (1)

• µ0 is appropriate constant for steady-state slip at velocity Vo ,

• V is the slip rate

• Dc is the critical slip distance (also denoted by L)

• a and b are associated frictional parameters

• θ is the state variable (average contact lifetime)
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Early Investigation of Empirical Friction Laws

Coupled with:

Aging Law:
dθ

dt
= 1− V θ

Dc
(2)

or

Slip Law:
dθ

dt
= −V θ

Dc
ln(

V θ

Dc
) (3)
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Schematic Diagram
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The Burridge-Knopoff Model

• Dynamic Modeling Requirements:
• Friction law (values for the frictional parameters - somewhat

unknown!)
• Initial spatial distribution of the stress and strength of the material

over the fault surfaces.
• Mathematical description of how these properties evolve during the

rupture process.

• One type of dynamic model, studied extensively since its
introduction in the 1960s, is the Burridge-Knopoff (1967) model.
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The Burridge-Knopoff Model

Rough surface with the rate-and-state friction law

Driving plate vp

λ
u jHtLµ
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There are a Number of Modeling Challenges

• The nonlinearity of rate and state friction laws impose challenges in
the numerical simulations.

• A correct description of the spatio-temporal variability of parameters
involved in the earthquake rupture process is required, but difficult.

• Friction laws like these are derived from small-scale experiments
which evokes the question of scaling the parameters to seismic
faulting.
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The Single Spring-Block Model

The governing equations:

u̇ = v − v0

v̇ = (−1/M)[ku + θ + A ln(v/v0))]

θ̇ = −(v/Dc)(θ + B ln(v/v0))


,

(4)

where u the slip relative to the driver plate, θ is the state variable, v the
block’s velocity, A, B are the stress parameters and Dc is the
characteristic slip distance.
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The Single Spring-Block Model

The non-dimensional equations of motion are:

u̇ = v − 1
v̇ = −γ2[u + (1/ξ)(θ + ln(v))]

θ̇ = −v(θ + (1 + ε) ln(v))


,

(5)

where
ξ = (kDc)/A

is the nondimensional spring constant,

γ =
√

k/M(Dc/vo)

is the nondimensional frequency and

ε = (B − A)/A

is a ratio of the stress parameters in the RS friction law.
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The Stationary Solution
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Hopf Bifurcation Parameter Spaces
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Periodic Solutions
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The Discrete Setting

Governing Equations:

üj = γ2(uj−1 − 2uj + uj+1)− γ̃2uj − (γ2/ξ)(θj + ln(u̇j + 1))

θ̇j = −(u̇j + 1)(θj + (1 + ε) ln(u̇j + 1))

}
(6)

where uj is the non-dimensional slip of the j th block relative to the driver
plate,

γ =
√
µ/m(Dc/Vo) and

γ̃ =
√
λ/m(Dc/Vo)

are the nondimensional frequencies,

ξ = (µDc)/A

is the nondimensional spring constant, and

ε = (B − A)/A
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The Discrete Setting

N blocks are evenly spaced on a chain of length 20 units. The initial data
is a smooth Gaussian pulse centered at the middle block:

u0(j) = 1.5e
−(xj−10)2

σ2 , for j = 1, ...N, where σ = 1,

v0(j) = 0, for j = 1, ...N

chosen to represent localized departure from the equilibrium regime.
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3 Block System
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20 Block System
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The Continuum Model

The wave equation for u(x , t) driven by rate-and-state friction and its
associated state variable evolution equation:

utt = c2∆u − γ̃2u − (γ2/ξ)(θ + log(ut + 1)))
θt = −(ut + 1)(θ + (1 + ε) log(ut + 1))

}
,

(7)

where the final equations now involve a fourth internal parameter:

c2 = lim
m,∆x→0

(µD2
c ∆x2)/(mV 2

o ),

the square of the wave speed.

Also exhibits chaotic solutions when varying ε.
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Localized Solutions

In certain parameter regimes both the discrete and continuous
formulations exhibit localized solutions.

These solutions exhibit behavior similar to that of either a soliton or a
breather.
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Solitons and Breathers

• The general definition of a soliton solution to a nonlinear wave
equation is that it has 3 properties:

• a wave with permanent form
• localized in space for each fixed point in time
• if two solitons meet, their forms are preserved after the interaction.

• A breather, on the other hand, is a time-periodic, exponentially
decaying (in space) solution of a nonlinear wave equation.
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Solitons and Breathers

[Schmittbuhl et. al. (1993)] [Birnir (1994)]
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Significance of Solitary Wave Solutions

The significance of these types of solitary wave solutions was emphasized
by Heaton (1990), who studied dislocation time histories generated from
models derived from earthquake waveforms.
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Solitons and Breathers

• Similar to the discoveries made by Schmittbuhl et. al. (1993) and
Español (1994), we have also seen solitary wave and localized
solutions in both the discrete and the continuous models with RS
friction.

• These solutions can be understood as a proxy for the propagation of
the rupture front across the fault surface during an earthquake and
may determine a range for suitable parameter values to be used in
dynamic modeling of earthquakes.
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Localized Solutions in the Discrete Formulation
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Localized Solutions in the Continuous Formulation
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Current Status of Dynamic Rupture Modeling

• What are the initial conditions on fault prior to an
earthquake????
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Elastodynamics

The equations governing anti-plane deformation in 2-d:

ρ
∂2u

∂t2
= G(

∂2u

∂x2
+
∂2u

∂y 2
), σxz = G

∂u

∂x
, σyz = G

∂u

∂y
(8)

solved in the domain (x , y) ∈ [0, L]× [0,H], where u is the displacement, σxz

and σyz are the shear stress components and ρ and G are the density and shear
modulus. The boundary conditions are:

σxz(0, y , t) = σnf (V , θ), y ∈ [0,Hs ] (9a)

u(0, y , t) = Vpt, y ∈ (Hs ,H] (9b)

σyz(x , 0, t) = 0, x ∈ [0, L] (9c)

σxz(L, y , t) = 0, y ∈ [0,H] (9d)

σyz(x ,H, t) = 0, x ∈ [0, L] (9e)
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Switching Method
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Conclusions (and some questions!)

• That the transition to chaos for the discrete and continuum model
with this friction law is dependent on N and on model parameters
(e.g. ε) may indicate that when implementing it in dynamic rupture
models, qualitative behavior may be lost or altered when considering
models at larger scales.

• Localized solutions may suggest a possible range for parameters that
could be used in future earthquake modeling.

• Earthquakes are the result of processes in the earth’s crust that have
evolved over multiple scales in both time and space and we need to
account for the evolution of the fault due to tectonic loading in the
interseismic period.

• More sources of complexity? Geometry?
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