\% Copyright 2021 Bjorn Birnir
\% This program cannot prevent infection, but it
\% can help minimize it. It application is completely
\% the responsibility of the user.
clear all
figure(1), clf
figure(2), clf
figure(3), clf
\%
\% \% \% \%
\% What it the volume of the room?
$\mathrm{V}=3574.9$; \% parameters for Room 1310 in the UCSB Library
\% What is the air exchange rate, ACH ?
$\mathrm{ACH}=6.41$;
\% What is the number of infectious persons in the room?
$b=1$;
\% Do everyone wear a mask, $a=1, \mathrm{NO}, \mathrm{a}=9$, YES?
$a=5$;
\% How many people are in the room?
I=800; \% > b, p<10\%
\% Are the people at rest $\mathrm{E}=1.584$ or exercising $\mathrm{E}=5.89$?
$\mathrm{E}=1.584 ; \% \mathrm{E}$ is exhalation rate
\% These rates are typical for rooms of dimensions
\% 7 top 14 meters
\%
\% \% \% \% \%
\%Values of dissipation constants depending
\%on lifetime of virus with different relative
\%humidity RH

$$
\begin{array}{ll}
\mathrm{k} 0=0.0031 ; & \% 21 \mathrm{RH} \\
\mathrm{k} 5=0.0078 ; & \% 35 \mathrm{RH} \\
\mathrm{ka}=0.016 ; & \% 51 \mathrm{RH} \\
\mathrm{~kb}=0.024 ; & \% 65 \mathrm{RH} \\
\mathrm{kc}=0.028 ; & \% 81 \mathrm{RH}
\end{array}
$$

\%
\%Values of dissipation constants depending
\%on air exchange per minute ACH
k6=0.01; \%0.6 ACH
k1=0.016; \%1 ACH
k2=0.025; \%1.5 ACH
k3=0.1; \%6ACH
$\mathrm{kj}=\mathrm{ACH} / 60 ; \% \mathrm{kj}=\mathrm{ACH} / 60$
\%k=0.1 \%this is with the standard 6ACH
\%
\% Exhalation rate per minute $E=1.584 \mathrm{~m}^{\wedge} 3 / \mathrm{min}$. At rest.
\% Exhalation rate per minute $\mathrm{E}=5.89 \mathrm{~m}^{\wedge} 3 / \mathrm{min}$. Heavy exercise.
\% $\mathrm{C}(\mathrm{t})$ is concentration of virions (viruses
\% in aerosols)
$C(1)=b * E /\left(3^{*} a * V\right)$;
\% The factor $1 / 3$ corresponds to a silent person, 1 is a talkative person
$p(1)=0.6^{*}(1-\exp (-C(1)))$;
$\% 0.6=0.3(30 \%$ vaccination effectiveness VE) $\times 2$ virulence factor of delta
\% Want p<1\% after 2 hours
$\mathrm{m}=2$; \%number of infected persons
$\% \mathrm{pb}(1)=\left(\text { factorial }(l-b) /\left(\text { factorial }(l-(b+m))^{\star} \text { factorial }(m)\right)\right)^{*} p(1)^{\wedge}(m)^{*}(1-p(1))^{\wedge}(l-(b+m)) \% \mid$
people in room, one infectious
\%one person infected, $\mathrm{m}=1$
$\% \mathrm{pb}(1)=(\mathrm{l}-1)^{*} \mathrm{p}(1)^{*}(1-\mathrm{p}(1))^{\wedge}(\mathrm{l}-2)$;
\%two people infected, $\mathrm{m}=2$
$\mathrm{pb}(1)=0.5^{*}(\mathrm{l}-1)^{*}(\mathrm{l}-2)^{*} \mathrm{p}(1)^{\wedge} 2^{*}(1-\mathrm{p}(1))^{\wedge}(\mathrm{l}-3)$;
\%three people infected, $\mathrm{m}=3$
$\% \mathrm{pb}(1)=(\mathrm{l}-1)^{*}(\mathrm{l}-2)^{*}(\mathrm{l}-3)^{*} \mathrm{p}(1)^{\wedge} 3^{*}(1-\mathrm{p}(1))^{\wedge}(\mathrm{l}-4) / 6$;
$k=k j+k 5$; \%kj and viral decay at 35% RH
for $\mathrm{j}=2: 1: 480$
$C(j)=(C(1) / k)^{*}\left(1-\exp \left(-k^{*} j\right)\right) ; \%$ concentration of virions
$p(j)=0.6^{*}(1-\exp (-C(1) * j+C(j))) ; \%$ probability of infection
\%m number of people infected
$\% \mathrm{pb}(\mathrm{j})=\left(\text { factorial }(l-b) /\left(\text { factorial }(l-(b+m))^{\star} \text { factorial }(m)\right)\right)^{*} p(\mathrm{j})^{\wedge}(\mathrm{m})^{\star}(1-\mathrm{p}(\mathrm{j}))^{\wedge}(l-(b+m))$; \%l people in room, one infectious, m infected
\%one person infected, $\mathrm{m}=1$
$\% \mathrm{pb}(\mathrm{j})=(\mathrm{l}-1)^{*} \mathrm{p}(\mathrm{j})^{*}(1-\mathrm{p}(\mathrm{j}))^{\wedge}(\mathrm{l}-2)$;
\%two people infected, $\mathrm{m}=2$
$\mathrm{pb}(\mathrm{j})=0.5^{*}(\mathrm{l}-1)^{*}(\mathrm{l}-2)^{*} \mathrm{p}(\mathrm{j})^{\wedge} 2^{*}(1-\mathrm{p}(\mathrm{j}))^{\wedge}(\mathrm{l}-3)$;
\%three people infected, $\mathrm{m}=3$
$\% \mathrm{pb}(\mathrm{j})=(\mathrm{l}-1)^{*}(\mathrm{l}-2)^{*}(\mathrm{l}-3)^{*} \mathrm{p}(\mathrm{j})^{\wedge} 3^{*}(1-\mathrm{p}(\mathrm{j}))^{\wedge}(\mathrm{l}-4) / 6$;
end
\% Want pb < 10\% after 2 hours
figure(1), clf
plot(C,'LineWidth',2);hold on
ylabel('Average droplet concentration','FontSize',15), xlabel('time (minutes)','FontSize', 15)
figure(2), clf
plot(p,'LineWidth',2);hold on
ylabel('Probability of Infection','FontSize',15), xlabel('time (minutes)','FontSize',15)
figure(3), clf
plot(pb,'LineWidth',2);hold on
ylabel('Binomial probability of infection','FontSize',15), xlabel('time (minutes)',''FontSize',15)

