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An ODE Model of the Motion of Pelagic Fish
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A system of ordinary differential equations (ODEs) is derived from a discrete system of
Vicsek, Czirók et al. [Phys. Rev. Lett. 75(6):1226–1229, 1995], describing the motion
of a school of fish. Classes of linear and stationary solutions of the ODEs are found and
their stability explored using equivariant bifurcation theory. The existence of periodic
and toroidal solutions is also proven under deterministic perturbations and structurally
stable heteroclinic connections are found. Applications of the model to the migration of
the capelin, a pelagic fish that undertakes an extensive migration in the North Atlantic,
are discussed and simulation of the ODEs presented.

KEY WORDS: Collective motion, fish schools, migration, periodic solutions, tori, sta-
bility, equivariant bifurcation theory, swarming, structural stability, heteroclinic orbits

1. INTRODUCTION

The internal dynamics of a school of fish and the migration of the school as
a whole present a fascinating problem with many applications. The individ-
ual fish tend to adjust their direction and speed to the direction and speed of
the school as a whole, see Partridge, (28) but the internal structure of the school
can be very complicated. We discuss the biology that the model is based on in
Sec. 2. In this paper we show how the commonly used discrete models introduced
by Vicsek, Czirók, Ben-Jacob, Cohen, and Shochet in 1995(13,14,15,35,36) for the
motion of individuals can be turned into ordinary differential equations (ODEs).
The ODEs have many advantages over the discrete models: unphysical aspects
of some discrete models such as instantaneous turning are eliminated and other
aspects such as turning rates are automatically taken care of. It is relatively simple
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to find solutions of the ODEs and examine their stability. The modern theory of
dynamical systems can frequently be used to give a complete qualitative analysis
of the phase space of the ODEs thus leading to a complete understanding of the
possible solutions. Dynamical systems theory applies to the discrete model as
well but in general it is much harder to get concrete results for discrete dynamical
systems than continuous.

A review of papers on the Czirók, Vicsek (CV) model and the associated
continuum equations, is presented in Ref. 16. There the analogy with models in
statistical mechanics is illustrated. The CV model possesses both a disordered and
an ordered phase, characterized by an order parameter, depending on the level of
noise in the system. The other important parameter is the density of the particles. It
is shown that when the noise is scaled by the density to the right power, a scaling of
the order parameter emerges, close to the critical noise level marking the boundary
between ordered and disordered phases. This scaling is similar to the scaling close
to a critical temperature in statistical mechanics. Mean field theory is used to
derive a continuum equation for the evolution of the density and a hydrodynamic
equation is also presented that has vortex solutions. A model studied by Toner and
Tu(33,34) determining long range interaction in the continuum is discussed and the
associated scalings of the correlations between two location. The scalings of these
correlations are shown to be anisotropic (affine), with different exponents along
and perpendicular to main motion in an ordered phase.

The work on the CV models clearly shows how methods from statistical
mechanics can be used to analyze the case of a large number of particles. It is
still essential to study models that can be more closely related to biology and
whose simulations can be compared to available data. One such case is the spatial
distributions and feeding and spawning migrations of pelagic fish.

The role of the capelin (Mallotus villosus) in the ecosystem in the arctic ocean
around and north of Iceland is discussed in Vilhjálmsson(38) and the assessment
of the stock using several surveys each year are discussed by Vilhjálmsson and
Carsadden. (39) Following Vilhjálmsson(37,38) we give a short description of the
biology of the capelin and its feeding and spawning migrations that cover hundreds
of kilometers in the span of one year.

The capelin in the waters of Iceland and the ocean area between Iceland,
Greenland and the island of Jan Mayen is considered to be a separate stock
from the existing stocks in the Barent Sea and of Canada. The capelin spawns
in shallow water (10–150 m) of the south and west coast of Iceland. The larvae
hatch in approximately 3 weeks after spawning that peaks in March, they drift
with the clockwise current around Iceland to the continental shelf north and east
of Iceland and to a varying degree to the East Greenland continental plateau.
Most juveniles grow up on or in the vicinity of these continental shelves, most
of the year’s class matures and spawns at age 3 the rest at age 4. Spawners at
age 2 are few and 5-year-old spawners are rare. Maturing capeling age 2 and
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3 years (spawning the following year) undertake a migration across the Iceland
sea north of Iceland, toward the island Jan Mayen, during spring and summer. The
returning migration takes place in September and October and goes east toward
Greenland and south into the Denmark straights between Iceland and Greenland,
see Figure 14 that shows both the feeding and the spawning migration. These are
extensive migrations covering hundreds and sometimes thousands of kilometers.
By November the adults have usually assembled near the shelf’s edge northwest,
north and northeast of Iceland from where another migration, this time a spawning
migration, starts in December to January. This migration follows the outer edge of
the Icelandic continental shelf in a clockwise direction. In some years a portion of
the stock may arrive on the spawning grounds southwest and southeast of Iceland
directly from the northwest. However, even in those years most of the stock still
follows the traditional route of the spawning migration.

The capelin are pelagic, planktivorous fish and changes in their physical and
biological environment profoundly affect their abundance, migration, distribution
and growth. They play a key role in the marine ecosystem of this area. They are
the single most important item in the diet of the Icelandic cod (Gadus morhua)
and several other important commercial fish species in Icelandic and Greenland
waters. The capelin is also fed on by marine mammals and seabirds. Because
of its importance extensive research and monitoring of the capelin stock, see
Ref. 36, has taken place since the late 1970s.

The ODEs are motivated by applications to pelagic species of fish. In partic-
ular we would like to understand the migration route of the capelin in the North
Atlantic, see Vilhjálmsson. (37,38) There already exist both discrete and contin-
uous(4,24,25) (partial differential equations) models for this migration. Hubbard,
Babak, Magnússon and Sigurdsson(20) added ocean isotherms, food density and
directional noise to the CV model in order to induce migration. They also added
terms permitting the fish to adjust its speed to the speed of the school. Einarsson,
Magnússon and Sigurdsson added ocean currents and the shape of landmasses. (26)

They were able to reproduce the capelin migration numerically but at the expense
of inserting an artificial bias through the noise. The question one has to answer by
such simulations is whether there is a dynamical reason for both the feeding and
spawning migration and if so, how they are triggered. The ODEs can be viewed
as one step toward answering these questions.

The migration of the capelin is not fundamentally different from the migration
of other species of animals. Thus the numerical models and questions asked about
other migrations are similar. What are the local interactions between individuals,
how does the environment influence the migration, and what makes the animals
switch from one migratory phase to another? A fundamental question is what
role genetics play. Inherited behavior clearly influences the local interaction but
whether it does determine the global features of the migration is an open question.
It should be possible to see numerically whether such genetic bias is necessary in
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order for the models discussed above to produce some of the observed migratory
patterns.

Finally the complex configurations (phases) observed in the simulations are
intriguing themselves. The individual interactions seem to be able to create very
complex behaviors on a global scale and one may ask: Can we use these as models
of cells or primitive organisms in biology?

The outline of the paper is as follows. In Sec. 2 we introduce the discrete
model and discuss the experiments and observations of fish schools that justify it.
The continuous model is derived in Sec. 3. It basically follows from the vanishing
time-step limit of the discrete model. In Sec. 4 we find migratory and stationary
solutions of the continuous system (ODEs). These solutions are the building
blocks from which one hopes to build the migration of the capelin and circling
and swarming in the feeding and spawning grounds. In Sec. 5 we determine
the stability of these solutions and discuss how the stationary solutions turn into
circling solutions under deterministic perturbations. The perturbations model both
the error term separating the discrete system from the ODEs and environmental
effects, such as a food and thermal gradients and ocean currents. The stationary
solutions turn out to have a very rich structure due to the symmetries of both the
discrete and continuous systems and in Sec. 6 we use equivarient bifurcation theory
to find all the stationary solutions with these symmetries. These solutions become
periodic orbits when deterministic perturbations are added to the ODEs. Solutions
that are periodic orbits under translation of the phase, in polar coordinates, and
form tori under deterministic perturbations are found in Sec. 7. The stability of all
of these solutions is explored in Sec. 8 and structurally stable heteroclinic orbits
between stationary solutions are also found. The addition of terms representing
attraction and repulsion is discussed in Sec. 9. In Sec. 10 we discuss deterministic
perturbations of the ODEs and how they can be used to find solutions of the
discrete system and predict their stability. In Sec. 11 applications to the migration
of the capelin are discussed and in Sec. 12 we state our conclusions. Because of
the symmetries of the system we write the ODEs in polar coordinates in the paper
but in Appendix A the ODEs are written in Cartesian coordinates.

2. THE DISCRETE MODEL

The two-dimensional discrete model (CV) that was introduced by Vicsek,
Czirók, Ben-Jacob, Cohen, and Shochet in 1995(35) is very simple(

xk(t + �t)

yk(t + �t)

)
=

(
xk(t)

yk(t)

)
+ vk(t)

(
cos(φk(t))

sin(φk(t))

)
�t (1)

Here (xk(t), yk(t)) are the Cartesian coordinates of the kth fish in the plane, at time
t , and (cos(φk(t)), sin(φk(t))) is the unit direction vector of its velocity. We will
simply call it the direction below. Let N be the number of fish. The fish see other
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fish and sense each other through their lateral line, either as fluid motion or small
pressure variations, see Partridge. (28) This leads to alignment of the individual fish
with the direction of the whole school and this can be expressed as

(
cos(φk(t + �t))

sin(φk(t + �t))

)
= 1

N

N∑
j=1

(
cos(φ j (t))

sin(φ j (t))

)
(2)

Namely the direction is updated in each time iteration and the new direction of
every fish becomes just the average of all the directions. Note that Eq. (2) is the
same for all k.

Then the CV model simply says that in every time iteration, a new direction
angle is computed, by averaging the directions of all the fish and the position of
each fish is updated from its old position by adding the velocity, computed with
the new direction, times the length of the time step. This combination of formulas
(1) and (2) constitutes the original CV model.

However, there is an important point missing in this iteration which was
pointed out by Partridge: (28) when an individual fish comes into a school, it also
adjusts its speed to try to travel at the same speed as the other fish. Thus one
should also adjust the speeds and this was done by Hubbard, Babak, Magnússon
and Sigurdsson. (20) The new speed in each iteration becomes the average speed of
the school as a whole

vk(t + �t) = 1

N

N∑
j=1

v j (t) (3)

since the fish try to adjust their speed to that of the school. This completes the
discrete model. The directions and speeds are computed in every iteration, using
(2) and (3), and the result substituted into (1). This completely determines the
trajectory of the school when the initial positions (xk(0), yk(0)), 1 ≤ k ≤ N and
initial velocities vk(0)(cos(φk(0)), sin(φk(0))), 1 ≤ k ≤ N are given, for all the
individual fish.

In Partridge and Pitcher (29) the sensory basis is explored for the interaction
terms that the (improved) CV model above is based on. It is established in this
paper that fish use both their vision and the pressure and fluid velocity variations,
sensed by their lateral line, to adjust their direction and speed to that of the other
fish in the school. Experiments of blinding the fish and cutting the lateral line,
show that both vision and the lateral line provide important and complimentary
sensory information. One sense can to some extent compensate for the other but at
the cost of changing the relative configurations in the school. The nearest neighbor
distance is also increased for the blinded fish whereas it is decreased for the fish
with a lateral section. The reaction to the stimulus of these two senses can safely
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be modeled by a general function of velocities multiplied by a function of the
directions angles

f (v1, . . . , vN )g(φ1, . . . , φN ) (4)

If we expand f in a general series in the moments (powers) of the velocities and g in
a Fourier series of the angles, then the first term can be assumed to have the largest
coefficient. Since there is no preferred fish the coefficients of all the velocities in
the first moment (the mean) and angles in the first harmonic are one. This is the
interaction term in the improved CV model above. Thus the model captures the
leading term of the general form of the alignment and speed adjustment. The form
of the higher order terms probably depends on the species of fish and would have
to be determined by careful experiments. We will discuss the influence of these
higher order terms on stability in Sec. 8. The strength of the interaction combines
with the unitless parameter measuring the turning rate. Thus, one can depend on
the improved CV model (1–3) for a qualitatively if not quantitatively correct model
of the interaction of the individual fish with the school.

Alignment in direction and speed is not the only tendency present in an
aggregation of groups of animals. Repulsion when two or more individuals come
too close or attraction when two individuals spot each other and move closer are
also present. (19,28,29) Such models have been presented by Aoki, (1) Reynolds (30)

and Huth and Wissel. (21) It is straightforward to incorporate such terms in the
model and we will do so below, but for the next few sections we concentrate on
the alignment and consider repulsion and attraction to be forces that only come
into play when the fish are about to collide or are very dispersed and will move
toward each other.

3. THE CONTINUOUS MODEL

Consider the discrete Eq. (1) written in a form that includes (2) and (3)

(
xk(t + �t)

yk(t + �t)

)
−

(
xk(t)

yk(t)

)
= 1

N 2

N∑
j=1

v j (t − �t)
N∑

j=1

(
cos(φ j (t − �t))

sin(φ j (t − �t))

)
�t

(5)
We divide by �t and send �t to 0 to obtain the ODEs

(
ẋk(t)

ẏk(t)

)
= 1

N 2

N∑
j=1

v j (t)
N∑

j=1

(
cos(φ j (t))

sin(φ j (t))

)
(6)
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3.1. Polar Coordinates

Introducing complex variables

zk = xk + iyk

we have in polar coordinates

zk = rkeiθk (7)

The velocity vector żk = ẋk + i ẏk associated to the complex position zk can be
written in polar coordinates as

żk = vkeiφk (8)

where φk is the angle of the velocity vector and vk is the speed.
Differentiating (7) with respect to t gives

żk = ṙkeiθk + irk θ̇keiθk

= (ṙk + irk θ̇k)eiθk (9)

and (8) and (9) combine to give

ṙk + irk θ̇k = vkei(φk−θk )

By comparing real and imaginary parts in the last equation, we get the two
equations

ṙk = vk cos(φk − θk) (10)

rk θ̇k = vk sin(φk − θk) (11)

for k = 1, . . . , N .

3.2. The ODE’s in Polar Coordinates

We now let �t be the discrete time step and let zn
k , żn

k be the n-th iterations
of the position and the velocity, then

zn
k = rn

k eiθn
k (12)

żn
k = vn

k eiφn
k (13)

Looking at Eq. (6) we want the next time iterate to be

żn+1
k = 1

N 2

N∑
j=1

vn
j

N∑
j=1

eiφn
j (14)
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Now, let

ζ = 1

N 2

N∑
j=1

vn
j

N∑
j=1

eiφn
j (15)

and interpolate between velocity vectors, during the nth and n + 1th time step,

żn+1
k = żn

k (1 − α�t) + αζ�t (16)

where α is a unitless turning rate. It can also be considered to be a measure of the
inertia of the fish. From (16) we get

żn+1
k − żn

k = α�t
(
ζ − żn

k

)
and by dividing by �t and letting �t → 0+ we obtain the ODE’s.

z̈k = αζ − αżk . (17)

We recall from (15) that as �t → 0+

ζ = 1

N 2

N∑
j=1

v j

N∑
j=1

eiφ j (18)

and by (17) and (18)

z̈k + αżk = α
1

N 2

N∑
j=1

v j

N∑
j=1

eiφ j (19)

Differentiating (8) with respect to t we obtain

z̈k = (v̇k + ivk φ̇k)eiφk (20)

and thus (17) and (20) give

(v̇k + ivk φ̇k + αvk)eiφk = α

N 2

N∑
j=1

v j

N∑
j=1

eiφ j

or

v̇k + αvk + ivk φ̇k = α

N 2

N∑
j=1

v j

N∑
j=1

ei(φ j −φk )

By equating real and imaginary parts in the last equation we get the system of
ODEs:

v̇k = α

N 2

N∑
j=1

v j

N∑
j=1

cos(φ j − φk) − αvk (21)
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vk φ̇k = α

N 2

N∑
j=1

v j

N∑
j=1

sin(φ j − φk) (22)

for k = 1, . . . , N . Note that solutions to (21) and (22) need to be found in order
to solve (10) and (11).

3.3. The ODE Initial Value Problem

Now to solve the initial value problem (IVP) for the motion of the school of
fish, we must solve the system

v̇k = α

N 2

N∑
j=1

v j

N∑
j=1

cos(φ j − φk) − αvk

(23)

vk φ̇k = α

N 2

N∑
j=1

v j

N∑
j=1

sin(φ j − φk)

ṙk = vk cos(φk − θk)
(24)

rk θ̇k = vk sin(φk − θk)

That is we must first solve the system (23) with the initial speeds and directions

vk(0) = v0
k , φk(0) = φ0

k

and then solve the system (24), with the above solutions of (23) inserted and the
initial radii and position angles

rk(0) = r0
k , θk(0) = θ0

k

for k = 1, . . . , N , in order to get the positions of the fish and velocities at any time
t . The solution of the initial value problem (23) and (24) is then

rk(t), θk(t), vk(t), φk(t) (25)

for for k = 1, . . . , N .
We have stated the initial value problem here in polar coordinates because it is

the easiest coordinated system in which to investigate solutions and their symme-
tries. In Appendix A we state the initial value problems in Cartesian coordinates
for the reader’s convenience.
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4. THE MIGRATORY AND STATIONARY SOLUTIONS

Now that we have derived a continuous model from the discrete model, we
can apply dynamical systems theory to the continuous model. This allows us to
analytically find stationary solutions and bifurcations in this set of solutions to the
ODEs and use this analysis to predict the behavior of our discrete model under
certain conditions. We also can simulate data using both models and compare the
results, leading to a firmer understanding of our model and its advantages and
pitfalls.

This continuous model has great potential to give us valuable insights into
the behavior of the school of fish. With the help of our continuous model, we have
been able to find a linear solution and an infinite sequence of stationary solutions
for the system. The linear solution, in which all of the fish move in one direction,
is the general behavior of fish when they are in their migratory phase, moving as
large schools all together toward either the spawning or feeding grounds. Let the
turning rate be α = 1 for the remainder of the analysis; this is not necessary for
the existence of these solutions but this choice of α simplifies the exposition. By
analysis of our ODEs (23)–(24), we see that the migratory behavior occurs when
the direction angles of all of the fish are identical:

v̇k = 1

N 2

N∑
j=1

v j

N∑
j=1

cos(φ j − φk) − vk

= 1

N 2

N∑
j=1

v j

N∑
j=1

cos(0) − vk

= 1

N

N∑
j=1

v j − vk = 0

if

vk ≡ v

for all k. Thus, in this case, vk is a constant. Moreover by the same argument the
second equation in (23) gives

vφ̇k = 0

so if v �= 0,

φk ≡ φ

is also a constant for all k.
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Now if we substitute these solutions of the Eqs. (23) into the Eqs. (24) we get
the equations

ṙk = v cos(φ − θk)

and

rk θ̇k = v sin(φ − θk)

A simple solution of these equations is

θk(t) = θk(0) = φ

and

rk(t) = rk(0) + vt

Because this last equation is the equation of a straight line and the slope of the line
is v for all k, it is clear that the fish will move as a school, all in the same direction
φ, with constant speed v, on a single line. Indeed, the general asymptotic solution
of the initial value problem (23) and (24) of this type can be expressed as

rk = r0
k + vt, θk = φ + r0

k

r0
k + vt

(
θ0

k − φ
)
, φk = φ, vk = v (26)

up to leading order in powers of 1
r0

k +vt
, for all k, 1 ≤ k ≤ N . Figure 1 is a school

of fish having these same properties (same speed and direction) whose motion is
parallel but is not restricted to lie on a single line. (It is, however, asymptotic to a
single line.)

In addition to these linear solutions, we find an infinite family of stationary
solutions; letting the number of fish be any integer N , a stationary solution is
attained by choosing the direction vector of the kth fish in our school be the kth

Fig. 1. The Migrating School
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power of the (primitive) N th roots of unity eiφk = eiωk = ekiω, 1 ≤ k ≤ N , where

eiω = 1
1
N

To see that these angles produce stationary solutions, consider the system (23)
once again:

v̇k = 1

N 2

N∑
j=1

v j

N∑
j=1

cos(φ j − φk) − vk

vk φ̇k = 1

N 2

N∑
j=1

v j

N∑
j �=k

sin(φ j − φk)

Now the sum of all the N th root of unity vanishes

eiω + e2iω + · · · + e(N−1)iω + 1 = 0

and multiplying by e−iωk and taking the real and imaginary parts, we see that

N∑
j=1

cos(ω j − ωk) = 0 =
N∑

j �=k

sin(ω j − ωk)

(The easiest way of seeing that the sum of the N th root of unity vanish is to expand
the polynomial in the equation

zN − 1 = 0

into a product and notice that all the symmetric functions of the roots that are the
coefficients in the polynomial vanish except the last one.)

Thus the equation above reduces to the equations

v̇k = −vk, φ̇k = 0

if vk �= 0, which have the solutions

vk = v0
k e−t , φk = ωk

Substituting these solutions of the Eq. (23) into the Eq. (24) gives us the equations

ṙk = vk cos(ωk − θk)

rk θ̇k = vk sin(ωk − θk)

The solutions of these equations are asymptotically stationary, so it does not

matter which initial values rk and θk have; vk is decaying exponentially in t and
the solution quickly approaches a stationary solution. If we pick the initial angles
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Fig. 2. The Stationary School

θk(0) = ωk or distribute the fish at the N roots of unity around the circle we get
the solutions

rk = r0
k − v0

k e−t , θk = ωk

These are clearly asymptotically stationary solutions.
We summarize the (asymptotically) stationary solutions that we have found

of the system (23) and (24). They are

rk = r0
k − v0

k e−t , θk = ωk, vk = v0
k e−t , φk = ωk (27)

where eiωk is an N th root of unity. Thus, for all positive integers N , there is such
an asymptotically stationary solution. But as we will see below this is just the tip
of the iceberg.

We now have two classes of solutions that may be called linear and stationary,
see Figs. 1 and 2. We will call the linear ones

Migratory Solutions:

rk(t) = ro
k + vt

θ (t) = φ + r0
k

r0
k + vt

(
θ0

k − φ
)

(28)
vk(t) = v

φk(t) = φ

where φ is an arbitrary angle determined by the initial condition. These are solu-
tions to the system (23, 24) up to leading order in powers of 1

r0
k +vt

. The solution

(28) is asymptotic to a solution of (23, 24) consisting of N fish chasing each
other on a single line. The other class consisting of stationary solutions will
accordingly be called
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Fig. 3. The Migrating Solution of the ODEs. This simulation of the ODEs shows a typical migratory
solution in the x − y plane. The eight fish are started with arbitrary positions and velocities but after
a very short time they line up. The turning rate is α = 1, and the dimensionless units would be given
the units centimeters in case of the capelin.

Stationary Solutions:

rk(t) = ro
k

θ (t) = ωk
(29)

vk(t) = 0

φk(t) = ωk

These solutions are solutions to the system (23, 24). Migratory solutions are
simulated in Fig. 3 and deterministic perturbations of stationary solutions are
simulated in Figs. 4 and 5.

Examples of a migratory and stationary solutions are depicted in Figs. 1 and
2 respectively.

5. STABILITY AND DETERMINISTIC PERTURBATION

In this section we perform the stability analysis of the Migratory and Station-
ary solutions and discuss what kind of behavior of solutions the stability analysis
implies in the presence of deterministic perturbations. We will also discuss the
rationale for adding such perturbations.

We need to linearize the system (23) and (24) respectively around the Migra-
tory and Stationary solutions and then compute the eigenvalues of the resulting
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Fig. 4. The Circling Schools of Fish, with small velocity. In this simulation the fish are given initial
positions and velocities close to their stationary solutions. A deterministic perturbation is added to the
equations, see Eqs. (35, 36), the speed perturbation is ν = 0.0001 and the perturbation of the direction
angle is vω = 0.0001, the turning rate is α = 1.
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Fig. 5. The Circling Schools of Fish, with larger velocity. This simulation of the ODEs is similar
to Fig. 8, except the perturbation of the speed is larger. A deterministic perturbation is added to the
equations, see Eqs. (35, 36), the speed perturbation is ν = 0.0001 and the perturbation of the direction
angle is vω = 0.0012, the turning rate is α = 1.
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Jacobian matrix. The system (23) does not depend on the r and θ variables and thus
the Jacobian falls into two 2N × 2N matrices whose eigenvalues can evaluated
separately. Moreover, the latter 2N × 2N matrix corresponding to the system (24)
splits into N , 2 × 2 matrices, whose eigenvalues are easily found.

5.1. Stability of Migratory Solutions

In the migratory case, the Jacobian of the ODE vector field F(r, θ ) (right hand
side of the ODEs (23)) linearized about the migratory solutions (28), consists of
Toeplitz matrices, see Ref. 3, whose eigenvalues and eigenvectors can be explic-
itly computed. The formulas for the eigenvalues are given in Sec. 8. Counting
eigenvalues, we get N zero eigenvalues corresponding to the vk directions, N − 1
negative eigenvalues corresponding to the φk directions and one zero eigenvalue
corresponding to the diagonal N -torus T n rotation implemented by changing the
common direction angle φ. For the system (24) we are investigating the stability
of the linear trajectories rk = r0

k + vt that is determined by the angle equation

θ̇k = v

rk
sin(φ − θk)

Linearizing this equation about (28) gives

− v

r0
k + vt

cos(φ − θk) → − v

r0
k + vt

cos
(
φ − θ0

k

)
< 0

for ±(φ − θ0
k ) < π/2. This produces N negative eigenvalues for every fixed t and

thus the Migratory solution is stable except for changes in the speeds vk and the
common angle φ.

5.2. Stability of Stationary Solutions

A similar analysis of the stationary solution (29) with φk = ωk gives a
Jacobian with N zero eigenvalues corresponding to the vk directions but 2 positive
eigenvalues and N − 3 zero eigenvalues, corresponding to the φk directions, see
Sec. 8 for details. Then for the system (23) we have to add one positive eigenvalue
corresponding to the drift of φ along the diagonal of all the φks. The 2 × 2 matrices
corresponding to the position coordinates rk, θk have two zero eigenvalues. Thus
the stationary solution (29) is unstable.

5.3. Deterministic Perturbations

Fish are typically not stationary and one may wonder whether the stationary
solutions have any biological significance at all. As shown above the ODE (23, 24)
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system is the continuum limit of the discrete system. Thus for small time steps we
can consider the discrete system to be a deterministic perturbation of the ODEs.
In addition, for realistic simulations one wants to include environmental effect
such as thermal gradients, currents and food gradients. These can all be simulated
as deterministic perturbations. When small perturbations are added to the system
(23) the stationary solutions turn into periodic orbits. The radius of these periodic
orbit in the r, θ plane depends on the speed which is the perturbation to the vk

equation. Small speeds produce small circles, larger perturbations of the speed
large circles. Two such cases are shown in Figs. 3 and 4.

The stability of the Migratory solution means that the perturbations do not
affect it much unless they are very large. The only thing that can happen is
that the velocities change a little as does the common angle (direction) φ of the
school.

The stationary case is much richer and more varied. It possesses symmetries
that imply that whole families of stationary solutions exist and all of these families
can change into periodic orbits or even quasi-periodic orbits on tori in the presence
of deterministic perturbations. To understand these families and their stability we
must apply equivariant bifurcation theory, see Golubitsky, Stewart and Schaffer
[18].

6. EQUIVARIANT BIFURCATION THEORY

AND STATIONARY SCHOOLS

We now apply a theorem in Ashwin and Swift (3) to describe the stationary
solutions of the system (23, 24). The theorem will give us configurations of schools
of fish that are stationary. Then we will add deterministic perturbations and by
a similar argument as above show how these lead to solutions that are schools
of fish executing a periodic (circling) motion. These configurations are relatively
easy to understand so we will describe them first. The theorem requires some
mathematical background that we will explain but we refer the mathematically
sophisticated reader to the paper by Ashwin and Swift (3) for the details of the
proof. The simplest configuration is a group of fish located around a circle as in
the Stationary solutions (29) their locations given by the N th roots of unity, see
Fig. 6. The next configuration is to give each fish k − 1 companions located at
different radii but at the same angle, see Fig. 7. The total number of fish is now
N = mk, that is each group of k aligned fish is stationed at a position angle that is
an mth root of unity. Next we make l groups at each mth roots of unity. Each group
contains k j fish positioned in a radial formation, and we have to specify l − 1
parameters δ j that give the distance between the l groups, see Fig. 7. The total
number of fish is N = (k1 + · · · + kl)m. It follows from the theorem below that
with repulsion and attraction implemented, see Sec. 9 so that the fish cannot come
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Fig. 6. Stationary School Located at the Roots of Unity m = 8, k = 1.

too close to each other, or be too far apart, these are all the possible asymptotically
stationary solutions. Each configuration is an l torus T l−1 × T 1, parametrized by
the l − 1 parameters δ j , 1 ≤ j ≤ l − 1 and the rotation angle φ.

We will now explain the mathematical background for the theorem that
gives these above configurations. Golubitsky, Stewart and Schaffer (18) and Brown,
Holmes and Moehlis (9) can be consulted for more background. Let

ẋ = f (x)

be an ODE on a manifold M and assume that 
 is a group acting on M . The ODE
is 
 invariant if f commutes with the group action or f (γ x) = γ̂ f (x), γ ∈ 
.
Here γ̂ denotes the derivative map, see Arnold(2) which acts on the tangent space
Tx M . The isotropy subgroup �xo consists of all the group elements that leave the
solution xo invariant

�xo = {γ | γ xo = xo}

Fig. 7. Four Stationary Groups, m = 4, k = 3.
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Fig. 8. The Stationary Clusters of Schools, k1 = 5, k2 = 3, m = 24.

Associated with each isotropy subgroup is a subspace of fixed points

Fix[�xo ] = {x ∈ M | γ x = x for all γ ∈ �xo}
It follows immediately that if x(t) is a solution of the ODE then γ x(t) is also
a solution and the subspace of fixed points Fix[�xo ] is invariant under the flow
defined by the ODE. Now we can state the theorem:

Theorem 6.1. (Ashwin and Swift (3)) Every isotropy subgroup of a general SN ×
T 1 equivariant vector field is of the form

�k,m = (Sk1 × · · · × Skl )
m×Zm

where N = m(k1 + · · · + kl) and ×denotes the semi-direct product.

The groups are SN , the group of permutations of N objects, the action on SN

is the interchange of any two objects without regard to order, T 1is the circle and
the action on T 1 is just translation mod 2π {φ → φ + ψ}. This generalizes to the
diagonal of the N torus T N {φk → φk + ψ}, and the cyclic subgroups Zm of T 1

with action {φ → φ + 2π
m } mod 2π . By considering Fig. 8 it becomes clear that

the action on Sk j corresponds to a permutation of the position (and the direction)
of fish in the k j group, in each cluster of groups. The action on Zm is just rotating
the i th (of m) cluster into the i + 1th (as the lock on a safe) and the mth to the
first, and finally the torus action is the translation of the rotation angle φ.

We recap the discussion above by the following theorem.

Theorem 6.2. For every N there exist l tori, T l−1 × T 1, parameter families of
stationary solutions of the system of ODEs (23,24). These stationary solutions
consist of radial schools of fish separated by a repulsion zone of radius a and
forming schools of k j fish where k j ≤ b

a where b is the radius of the zone of
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attraction. The schools correspond to members of the fixed points of the isotropy
groups

�k,m = (Sk1 × · · · × Sk1 )m × Zm

forming m clusters of l radial schools, the total number of fish being N = m(k1 +
· · · + kl). The clusters are distributed as mth roots of unity and the parameters
in the torus T l−1 parametrize the distance between the subgroups of each cluster.
The direction angles of the schools are also mth roots of unity and are locked
to the position angles. The remaining parameter φ ∈ T 1 is the parameter of the
diagonal rotation on the 2N torus of angles T 2N .

Proof: Consider the system of equations

v̇k = α

N 2

N∑
j=1

v j

N∑
j=1

cos(φ j − φk) − αvk

(30)

vk φ̇k = α

N 2

N∑
j=1

v j

N∑
j=1

sin(φ j − φk)

ṙk = vk cos(φk − θk)
(31)

rk θ̇k = vk sin(φk − θk)

and let φk = ωk , so vk = v0
k e−αt as in the discussion of the stationary solution (29)

in Sec. 4. If we lock the position angles to the direction angles θk = φk then the
latter system (31) reduces to

ṙk = αvk

rk θ̇k = 0

The solution of this system is the asymptotically stationary solution

rk = r0
k − v0

k

α
e−αt , θk = ωk (32)

If we restrict the initial conditions of the radii r0
k to have the symmetry of Sk j the

permutations of k j objects, for each j , then the system (30) and the stationary
solutions

rk = r0
k , θk = ωk

are invariant under the action of the isotropy subgroups �k,m in Theorem 6.1, thus
each subspace of fixed points Fix[�k,m] is left invariant by the flow defined by the
system. But this means that these subspaces are all the stationary solutions of the
ODEs (23, 24) (and (30, 31)) that possess these symmetries. The parametrization
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Fig. 9. The First Stationary School. This is a simulation of the ODEs finding the stationary solutions
in Fig. 6. The fish travel in straight lines and stop at the stationary solutions, the turning rate is α = 1.

of these orbits by points on T l−1 × T 1 was explained above. The zones of attraction
and repulsion are explained in Sec. 9. The repulsive and attractive terms added to
the equation in Sec. 9 are still invariant under the action of the isotropy subgroups
�k,m and they fix the distance between the fish in each subgroup of k j fish to be
a, and the number k j to be the integer value of b/a. �

Three configurations of schools asymptotic to stationary schools are shown
in Figures 9–11.

7. THE EXISTENCE OF TORI

Dynamical tori have been observed for both numerical simulations and in
observations of fish schools, see Refs. 5 and 28. We now prove the existence of
periodic orbits that can perturb into such tori, under deterministic perturbations,
for two isotropy subgroups of stationary solutions.

Theorem 7.1. Assume that the alignment function has some higher order har-
monic components

f (φ j − φk) = sin(φ j − φk) +
∑
q=1

aq cos(q(φ j − φk)) + bq sin(q(φ j − φk))

Then the fixed point sets of the isotropy subgroups (Sk)N × Zm, N = mk, and
(Sk1 × Sk2 )m × Zm, N = (k1 + k2)m, generically contain periodic orbits (under
rotation parametrized by φ) of stationary solutions of the ODEs (23, 24).
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Fig. 10. The Second Stationary School. This is a simulation of the ODEs finding the stationary
solutions analogous to those in Fig. 7. The fish travel in straight lines, in 8 subschools of three fish
each, and stop at the stationary solutions, the turning rate is α = 1.

Proof: The theorem is an application of the following theorem of Ashwin and
Swift (3) to the ODEs (23, 24). �

Theorem 7.2. Every Fix[(Sk)N × Zm], N = mk, and Fix[(Sk1 × Sk2 )m × Zm],
N = (k1 + k2)m, generically contain a periodic orbit with diagonal flow.

Theorem 7.2 is proven in Ashwin and Swift. (3)

8. STABILITY OF SCHOOLS AND TORI

The stability of some of the configurations in Theorem 6.2 is worked out
in the literature. In particular, the stability of m circling clusters with a school
of k fish each (Sk)m × Zm , see Fig. 6, discussed above, is known. We start with
the following result see Okuda(27) and Watanabe and Swift, (41) that covered the
(Sk)m × Zm and SN cases respectively. The lemma also covers the stability of the
dynamical tori whose existence was established in Sec. 7. Suppose that we have an
alignment function f that is sin(φ j − φk) to leading order but is allowed to have
higher order (in a small parameter) harmonic content∑

q=1

aq cos(q(φ j − φk)) + bq sin(q(φ j − φk))

Lemma 8.1. Let N = mk and assume (v̄, φ̄) is an (Sk)m × Zm invariant station-
ary solution of (23) (with f as above) or a periodic solution, when f contains
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Fig. 11. The Third Stationary School. This is a simulation of the ODEs finding the stationary solutions
similar to those in Fig. 8. The fish travel in straight lines, in three groups of two subschools each, one
subschool having 3 fish the other one 5 fish, and stop at the stationary solutions, the turning rate is α = 1.

higher harmonics. Then the eigenvalues of the Jacobian linearized about (v̄, φ̄)
are:

1. λ0 = 0; one eigenvalue corresponding to the one torus action (rotation)
2. λr

j , 1 ≤ j ≤ m − 1, m − 1; rotation eigenvalues
3. λp; permutation eigenvalues with multiplicity m(k − 1)

These eigenvalues are given by the formulas

λr
j = v

2N

⎛
⎝ ∑

q∈M(m)1
j

q(bq + iaq ) +
∑

q∈M(m)2
j

q(bq + iaq ) − 2
∑

q∈M(m)

qbq

⎞
⎠

where

M(m) = {ml | l = 1, 2, . . .}
M(m)1

j = {ml − j | l = 1, 2, . . .}
M(m)2

j = {ml + j | l = 1, 2, . . .}
and

λp = − v

N

∑
q∈M(m)

qbq

We also get N eigenvalues equal to zero, corresponding to the vk directions.
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The eigenvalues, first calculated in Okuda, (27) are written in the form given
in Brown, Holmes, and Moehlis; (9) the terminology “rotation” and “permutation”
eigenvalues was first introduced in Ashwin and Swift. (3)

We now examine the stability of the fish schools using Lemma 8.1. First
consider (Sk)m × Zm and consider the ODEs (23, 24). Then Lemma 8.1 gives the
eigenvalues, see Ref. 9, λ0 = 0, and

1. λp = 0, with multiplicity m(k − 1)

2. λr
j =

{
v

2N , for j = 1 and m − 1

0, with multiplicity m − 3

In addition, we get N zero eigenvalues corresponding to the vk directions. The
eigenvalues corresponding to the rk and θk coordinates are all zero. We conclude
as in Sec. 5 that the (Sk)m × Zm stationary solutions are unstable.

Next we add the higher harmonic content to the alignment function f . We
only add one higher harmonic mode

aq cos(q(φ j − φk)) + bq sin(q(φ j − φk))

Then Lemma 8.1 gives the eigenvalues (see Ref. 9) λ0 = 0, and

1. λp = − v
N qbq , with multiplicity m(k − 1)

2. λr
j =

{
v

2n (1 − 2qbq ), for j = 1 and m − 1

− v
N qbq , with multiplicity m − 3

Thus if bq > 1
2q then the stationary solution (Sk)m × Zm of (23, 24), are stable

except for the 3N marginal vk, rk and θk directions and the single marginal
(unstable) direction of rotation on the torus. The computation is similar for the
tori in Sec. 7 and they are also stable except for the vk, rk and θk directions were
we still get all eigenvalues zero.

Now let us consider the migratory school SN . Then there are no rotation
eigenvalues and Lemma 8.1 gives the eigenvalues

λp = − v

N

with multiplicity N − 1. The vk directions give N zero eigenvalues. The rk and
θk directions give N negative eigenvalues − v

r0
k +vt

, for every fixed t . We have

linearized about the linear orbit as in Sec. 5. This means that apart from the speeds
vk , the migrating schools are stable as we saw in Sec. 5, except for the marginal
direction of the drift in the direction angle φ of the school, with the eigenvalue
λ0 = 0.
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8.1. Structurally Stable Heteroclinic Orbits

Structurally stable heteroclinic cycles exist in the phase space of the system
(23) see Ashwin and Swift. (3) This is unusual for ODE systems because usually
such heteroclinic cycles are structurally unstable. However, in the presence of
symmetries these cycles may be stable which means that they persist when small
perturbations are added to ODE’s. The configuration possessing the structurally
heteroclinic cycles (under the diagonal flow parametrized by φ) corresponds to
fixed points of the isotropy subgroup

SN/2 × Sp × Sq , p + q = N

2

where N is the total number of fish. This corresponds to three radial schools
of fish, with N/2, p and q members respectively. The heteroclinic orbits can be
illustrated on a canonical invariant region, see Ref. 3, illustrated in Fig. 12. The
two stable heteroclinic cycles shown in the figure are the connections between two
solutions with isotropy SN/2 × SN/2, or q = 0. By letting vk = 0 and imposing
the same symmetry on the r and θ coordinates as in Theorem 6.2, we get hetero-
clinic connections between stationary solutions corresponding to the last isotropy
subgroups, for the whole system (23,24). This corresponds to a school of fish con-
taining three subschools of N/2, p and q fish respectively, moving from one such
a stationary school, consisting of two subschools of N/2 each, to another such
school. The most likely scenario for this is that one subschool of N/2 fish splits
into two subschools of p and q fish each and subsequently these two subschools
merge again.

Fig. 12. The structurally stable heteroclinic orbits. This figure is a cartoon of the heteroclinic orbits
based on Fig. 11 in Ashwin and Swift. (3) The square is the canonical invariant region for the subspaces
of isotropy subgroups. The two circles are the two SN/2 × SN/2 stationary solutions. The dark circle
is an unstable (under the phase flow) stationary solution and the two heteroclinic cycles consist of
SN/2 × Sp × Sq stationary solutions.
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9. REPULSION AND ATTRACTION

We follow Couzin et al. (10) in adding a zone of repulsion of radius a, a zone
of orientation of radius o and a zone of attraction of radius b center at every fish,
see Fig. 13.

We add repulsive and attractive terms to the ODEs resulting in the equations

v̇k = α

N 2

N∑
j=1

v j

N∑
j=1

cos(φ j − φk) − αvk

+
∑
j �=k

gk j
rk − r j cos(θ j − θk)(

r2
k + r2

j − 2rkr j cos(θ j − θk)
)1/2

(33)

vk φ̇k = α

N 2

N∑
j=1

v j

N∑
j=1

sin(φ j − φk) −
∑
j �=k

gk j
r j sin(θ j − θk)(

r2
k + r2

j − 2rkr j cos(θ j − θk)
)1/2

ṙk = vk cos(φk − θ j )
(34)

rk θ̇k = vk sin(φk − θ j )

a

o

b

Fig. 13. The zones of repulsion, orientation and attraction.
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Fig. 14. The Migration of the Capelin, from H. Vilhjálmsson. (37) The top figure shows the feeding
migration taking place in summer and early fall. The bottom figure shows the spawning migration
taking place in winter.

The function gk j = g(|rk − r j |) is 1 when |rk − r j | ≤ a, 0 when a < |rk − r j | < o
and −1 when o < |rk − r j | ≤ b. In this paper, we assume for the sake of the sta-
bility analysis that gk j is a smooth function, a = o and g(|rk − r j |) = 0 when
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|rk − r j | = a. This means that if g = ∂G
∂r , then the potential G has a single min-

imum at r = a. This will stabilize the rk directions in the stability analysis in
the previous sections. In fact the configurations in Theorems 6.2 and 7.1 that are
stable in θ , will have local minima when the individual fish are separated by the
distance a, and so these configurations are stable. We also want the field of vision
and the sensitivity of the lateral line of the fish to be limited so we set α = 0 if
|rk − r j | > b.

There are obviously many other ways of modeling the repulsion and attrac-
tion of the fish, see for example, (17) but the terms above have the advantage of
preserving the group invariance and therefore making the analysis in the previous
sections still apply. There does not seem to be any biological reason to pick one
form of the repulsion or attraction terms over another as long as they make the fish
turn toward or away from each other in a smooth fashion. This changes when the
number of fish increases and one see drastically different behavior depending on
the attraction and repulsion as N → ∞, see Ref. 17. In simulations of the discrete
model (1) the direction angle of the fish within the zone of repulsion is typically
computed and it averaged with all the angles with a negative sign. This makes
fish turn away from fish that are too close. For the fish in the attraction zone the
direction angle is computed and it averaged with all the angles but with a positive
sign. This makes the fish turn toward a fish in the attraction zone.

10. DETERMINISTIC PERTURBATIONS

The ODE system that we simulate to compare with the simulations of the
discrete system and to include small environmental effect is

v̇k = α

N 2

N∑
j=1

v j

N∑
j=1

cos(φ j − φk) − αvk + ν

(35)

vk φ̇k = α

N 2

N∑
j=1

v j

N∑
j=1

sin(φ j − φk) + vkω

ṙk = vk cos(φk − θk)
(36)

rk θ̇k = vk sin(φk − θk)

where ν and ω are deterministic perturbation.
We do not expect this system to tell us much about the migratory solutions

but it should give information about what the schools of fish close to the stationary
solutions in Theorem 6.2 are doing. In particular we can use the solutions of this
system as a guide to find special solutions of the discrete system (1), such as
periodic solutions and tori and examine their stability.



An ODE Model of the Motion of Pelagic Fish

Indeed the system (35, 36) has periodic orbits close to the stationary solutions
in Theorem 6.2, see Figs. 8–10 and they are unstable. Tori also exist but these will
be discussed in another publication see Ref. 5.

We will now discuss what influence the stationary solutions in Secs. 6–7 can
be expected to have on the simulations of the school of fish. In simulations of
the discrete model (1) with small amount of noise added three types of school
behaviors are observed, that can be characterized as migratory, swarming and
circulating. It is reasonable to expect small perturbations of the stationary solutions
to lead to circling solutions and those to turn into swarms when the noise level is
increased. In Barbaro, Birnir and Taylor (5) simulations of the discrete system are
compared to simulations of the ODEs. Perturbations of the ODEs do in fact lead
to metastable periodic orbits and their instabilities are explored in Ref. 5. It is also
shown in this paper that the ODE system is capable of producing its own noise.

An ODE model that includes the zones of attraction and repulsion as well as
environmental effects can be written in the form

v̇k = α

N 2

N∑
j=1

v j

N∑
j=1

cos(φ j − φk) − αvk

+
∑
j �=k

gk j
rk − r j cos(θ j − θk)(

r2
k + r2

j − 2rkr j cos(θ j − θk)
)1/2

+ ∂

∂vk
G

(37)

vk φ̇k = α

N 2

N∑
j=1

v j

N∑
j=1

sin(φ j − φk)

−
∑
j �=k

gk j
r j sin(θ j − θk)(

r2
k + r2

j − 2rkr j cos(θ j − θk)
)1/2

+ 1

vk

∂

∂φk
G

ṙk = vk cos(φk − θ j ))
(38)

rk θ̇k = vk sin(φk − θ j )

where G is a function modeling the influence of the environment on the direction
and speed of the school, and the function gk j has the same values in zones of
repulsion, orientation and attraction as above.

11. THE CASE OF THE CAPELIN

The capelin (Mallotus villosus) is a pelagic species of fish that undertakes
extensive feeding and spawning migrations, covering distances of several hundred
miles, see Vilhjálmsson(37) in the North Atlantic. The timing and the route of
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the migration, see Fig. 14, are influenced by a variety of factors: environmental
conditions such as boundaries between warm and cold water masses, certain
isotherms which, as a rule, the fish do not cross, bottom topography, oceanic
currents, density of food and internal variables such as the physiological state and
the maturity of each fish, see Ref. 20, 37.

The migration of the capelin shown in Fig. 14 proceeds as follows. The
spawning grounds are off the southwest coast of Iceland. The mature stock migrates
northwards in early summer to feeding grounds in the Jan Mayen area. Jan Mayen is
the island close to the top right corner of the upper map in Fig. 14. There the capelin
stock takes advantage of the enormous increase in the biomass of the zooplankton
in the arctic summer. In early fall, the stock returns to the north and northwest
coast of Iceland. It gradually moves clockwise around the island and ends up at the
spawning grounds of the southwest coast in March to April. During some years, a
component of the stock migrates in a counterclockwise direction to the spawning
grounds, the size of this component being highly variable, see Refs. 20, 37.

The capelin migration was roughly captured by the simulation of Hubbard,
Babak, Magnússon and Sigurdsson(20) and in much more detail by Einarsson,
Magnússon and Sigurdsson. (26) However, both of these simulations relied on
oriented noise to pull the stock to the feeding and spawning grounds. The question
one must ask with the insight into the dynamics of the solutions in particular the
migratory (28) and circling (29) solutions, provided by the ODEs, is: can the mi-
gration be constructed solely from these solutions and the environmental factors?
The environmental factor are largely known and can be built into the model using
the function G in (37). The currents and overall variations in food and temperature
are tabulated for past years as functions of time and can be forcasted to some
extent for future years. This question is currently being addressed in simulations.
One does not expect any simplistic solutions such as Iceland being the center of
a circling solution. Rather the migrations would be a patchwork of migratory and
circling solutions, the latter turning into swarms when the noise level is sufficiently
high. In particular, it remains to determine how the schools can switch from one
phase (say migratory) to another (circling) and what triggers this transition.

12. CONCLUSION

The ODE model for the dynamics of schools of fish derived from the discrete
model (1) is a useful tool to examine the dynamics of fish schools. We have seen that
the ODE model possesses a wide variety of solutions that can be associated with
schools of fish and their dynamics. All symmetric stationary and circling solutions
can be described by equivariant bifurcation theory and their stability found. The
migratory solutions are stable whereas the circling solutions are unstable. The
ODEs provide the tools for understanding the structure of the phase space of the
schools of fish but much work remains to be done to fully understand the global
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structure. Finally, we can use the ODE to find corresponding structures in the
phase space of the discrete system (1), see Ref. 5.

Perhaps the most important lesson learned from the simulations of the ODEs
is a paradigm shift. Instead of looking for the biological reasons that drive the two
different migratory phases the ODEs show us that these phases are already there.
What is needed instead are the biological reason that induce a transition from one
phase to another.

It also still remains to simulate a truly realistic school containing up to
1 million individuals. The simulations so far, being of such a smaller magnitude
than the true number of fish in a typical school, must be interpreted as being of
super-individuals where each point represents a school. This amounts to a course-
graining of the problem and then all the schools in Secs. 6–8 can be collapsed to
a zone of (no) repulsion with radius a = 0, see Sec. 9.

We exploited that the Kuromoto system(22,23) of coupled oscillators sits in
the ODE system (23, 24) describing the schools. The symmetries that we used in
the equivariant bifurcation theory are those of the Kuromoto system. This raises
the question whether the complex Kuromoto solutions for a density of oscillators,
see Ref. 22, can also be applied to construct schools of fish for the limit when the
number of individuals goes to infinity. The answer is yes, but this will be explored in
another publications, see Birnir, Bonilla and Soler. (6) The stability of such solutions
is also being explored numerically, see Birnir, Einarsson and Sigurdsson. (7) Boilla,
Neu and Spigler, (8) Crawford and Davis, (11,12) Watanabe and Strogatz (40,32) and
Smereka(31) can be consulted for information on the Kuromoto and related systems
as the number of individuals goes to infinity. Based on the simulations of Smereka,
(31) we expect to see several complex states (phases) strongly influenced by noise.
It seems that in order to fully understand schools of fish and their dynamics, one
must understand these complex states of the incoherent noise-driven Kuromoto
system. This remains mostly an open problem.

APPENDIX A. THE ODES IN CARTESIAN COORDINATES

In this appendix we express the initial value problem (23) and (24) in Cartesian
coordinates.

In complex coordinates the initial value problem is

z̈k + αżk = α

N 2

N∑
j=1

|ż j |
N∑

j=1

eiarg(ż j ) (A.1)

with the initial positions and velocities

zk(0) = z0
k, żk(0) = ż0

k

where α is a unitless turning rate or inertia, for 1 ≤ k ≤ N .
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The real initial value problem is

ẍk + α ẋk = α

N 2

N∑
j=1

v j

N∑
j=1

eiφ j (A.2)

ÿk + α ẏk = α

N 2

N∑
j=1

v j

N∑
j=1

eiφ j (A.3)

with the initial positions and velocities

xk(0) = x0
k , ẋk(0) = ẋ0

k

yk(0) = y0
k , ẏk(0) = ẏ0

k

where again, α is a unitless turning rate. Here

vk =
√

ẋ2
k + ẏ2

k

and

φk = tan−1

(
ẏk

ẋk

)

The whole system must be solved for every k such that 1 ≤ k ≤ N .
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thank the late Kjartan Magnússon and Sven Sigurdsson at the University of Iceland
for useful discussions. He is indebted to his students Alethea Barbaro and Baldvin
Einarsson for reading the manuscript and correcting it. The simulations were done
by Alethea Barbaro. The author also wants to thank Andrea Bertozzi and her
students and Chad Topaz at UCLA, Allison Kolpas and Jeff Moehlis at UCSB
and Daniel Grunbaum at the University of Washington for helpful suggestions.
Some of the simulations are being done on a cluster of workstations, funded by a
National Science Foundation SCREMS grant number DMS-0112388.

REFERENCES

1. I. Aoki, A simulation study on the schooling mechanism in fish. Bull. Jap. Soc. Sci. Fish. 48:1081–
1088 (1982).

2. V. Arnold, Ordinary Differential Equations (MIT Press, Boston, 1973).
3. P. Ashwin, and J. Swift, The dynamics of n weakly coupled identical oscillators. J. Nonlin. Sci.

2:69–108 (1992).



An ODE Model of the Motion of Pelagic Fish
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37. H. Vilhjálmsson, The icelandic capelin stock. J. Marine Res. Inst. Reykjavı́k XIII(2):281 (1994)
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